

University of Nottingham UK | CHINA | MALAYSIA

Improved Methods for System Reliability Modelling

Professor John Andrews

SPAA & Dependability @ Siemens 2023 Nuremberg 8-9 November 2023

Resilience Engineering Research Group

Academic Staff

University of

Nottingham

- Prof John Andrews
- Dr Rasa Remenyte-Prescott
- Dr Luis Neves
- Dr Darren Prescott
- Dr Silvia Tolo
- Dr Derek Yan

NxGen Project Manager

Kate Sanderson

Network Rail

Started in 2009 with my appointment to a research chair in Infrastructure Asset Management supported by Network Rail and the Royal Academy of Engineering.

Research Activities

Modelling to support the prevention of system failures and the mitigation of their consequences

- Risk and Reliability Engineering
- Asset Management
- Resilience Engineering

Resilience Engineering Research Group

Industrial Sectors

Railways Nuclear Fuel Cell Oil & Gas Aerospace Military Manufacturing Healthcare

University of Nottingham UK | CHINA | MALAYSIA

Raiway Infrastructure Asset Management

Asset Management Modelling Framework

University of Nottingham

UK | CHINA | MALAYSIA

University of Nottingham UK | CHINA | MALAYSIA

Modelling Method

Petri Nets

Petri Net Basics and Definitions

- $\stackrel{'}{\bigcirc}$ Places, p_i
- Marked with tokens

Edges

• From place to transition or transition to place.

- Type:
 - immediate if $D_j = 0$
 - timed if $D_j \neq 0$
- Movement of tokens governed by the firing rule...

• If all input places of a transition are marked by at least one token then this transition is called **enabled**.

 After a delay D ≥ 0 the transition fires. The firing removes one token from each of its input places and adds one token to each of its output places.

Petri Net Model Features

University of Nottinaham

LIK | CHINA | MALAYSIA

Features

- Any distribution of times to transition
- Capable of modelling very complex maintenance strategies
- Concise structure
- Solution by Monte Carlo simulation
- Produces distributions of durations and no of incidences of different states
- Easy to modularise and link module models to form system model

University of Nottingham

Case Study

Maintaining Railway Track Geometry Vertical alignment of 200m sections

Vertical Alignment Degradation (200 m section)

University of Nottingham

UK | CHINA | MALAYSIA

Degradation

Inspection

Repair Options

Degradation time distributions account for the variation of all track sections along a route.

Condition	Condition Known?	Min Value	Average Value	Max Value	Comment
Good		92.66%	95.2%	97.31%	
Opportunistic		0.27%	0.42%	0.59%	
Routine		2.58%	3.11%	5.72%	
Urgent		1.12%	1.16%	1.18%	
Speed Restriction needed	Known	0.0%	0.005 %	0.018 %	Service disruption
	Unknown	0.0%	0.043 %	0.056 %	Potential safety issue
Line Closure needed	Known	0.0%	0.005 %	0.018 %	Service disruption
	Unknown	0.0%	0.057 %	0.07 %	Potential safety issue

Event	Number			
	Min	Average	Max	
Track Inspections	391	391	391	
Routine Intervention (tamp)	0.0	3.7	12.5	
Emergency Intervention (tamp)	0.0	2.58	3.11	
Speed Restriction	0.0	0.2	2.3	
Line Closure	0.0	0.028	1.57	

University of Nottingham UK | CHINA | MALAYSIA

Resilience Engineering

University of Nottingham

Hot Weather

Considering Climate Change

Effects of Climate Change – period of sustained high temperature

- Expansion in the rails means that tamping risks causing them to buckle.
- No tamping causes a drift towards a poorer condition.
- Track can be in any state at the start of the heatwave.

Figure 4.1 Predicted average summer temperatures in the UK (1900 – 2100)* 125

* Range of projected values based on the minimum and maximum of all UKCP18 temperature scenarios, at the 5th and 95 th percentile. Source: UKCP18 Anticipate, React, Recover, Resilient Infrastructure

Anticipate, React, Recover, Resilient Infrastructure Systems, National Infrastructure Commission, May 2020

Questions

Universitu of

- How many days of high temperature before the risk of a safety incident or a service disruption becomes unacceptable?
- How is maintenance best performed prior to a period of high temperature to ensure geometry resilience?
- How long after the high temperature period to clear the backlog of work?

Modified Model – weather module

University of

Nottingham

1280 track sections

Days into heatwave	Expected Number at full capacity	Expected number with speed restrictions	Expected number of line closures	Tamping backlog at end of heatwave	
				Routine	Urgent
0	1279.89	0.11	0.00	0.35	0.0
5	1279.23	0.77	0.00	2.56	2.22
10	1279.15	0.85	0.00	4.77	4.43
15	1278.89	1.11	0.00	7.26	4.45
20	1278.55	1.45	0.00	9.13	4.48
25	1278.46	1.54	0.00	11.61	4.51
30	1278.12	1.88	0.00	13.74	4.53

System / Route Model – Coloured Petri Nets

- Coloured tokens represent
 each section
 - localised transition parameters
 - transition times stored within the token
- Transition constantly receptive to firing.

- Simple example has been used to present the capabilities of Petri Net modelling approaches to support decisions on Railway Infrastructure Resilience Modelling
- The models are incredibly flexible and capable of:
 - mimicking the maintenance processes and strategies carried out no matter how complex.
 - applicable to a broad range of applications such as climate change.
 - extension to include different failure modes:
 - twist, horizontal alignment, cyclic top, gauge
 - rail grinding and welding
 - other forms of maintenance stone blowing / ballast cleaning
- Can be extended to include different asset types to produce a system or a route model – allowing a system level decision process

University of Nottingham UK | CHINA | MALAYSIA

Quantified Risk Assessment

Probabilistic Safety Assessment

Fault Tree Analysis

Component failure models

- Limited maintenance process detail
 - No Repair: $Q(t) = F(t) = 1 e^{-\lambda t}$ •
 - Revealed: •
 - $Q(t) = \frac{\lambda}{\lambda + \nu} \left(1 e^{-(\lambda + \nu)t} \right)$ Unrevealed: $Q_{AV} = \lambda \left(\frac{\theta}{2} + \tau\right)$
- Snap-shot in time

٠

PROJECT AIMS

- Incorporate: •
 - non-constant failure rates
 - dependent events
 - dynamic features
 - highly complex maintenance strategies •

Standby Systems

Standby System

- Pump P1 operational.
- When P1 fails P2 takes over the duty

Warm Standby

Pump P2 is not operational in standby. It becomes operational when P1 fails. It can fail in standby but with a lower rate than when operational.

P1 & P2 Dependent

Cold Standby

Pump P2 is not operational in standby. It becomes operational when P1 fails. It cannot fail in standby.

P1 & P2 Dependent

Туре	Description	Example
Secondary Failure	When one component fails it increases the load on a second component which then experiences an increased failure rate	Two pumps both operational and sharing the load. Each pump has the capability to deliver the full demand should the other pump fail
Opportunistic Maintenance	A component fails which causes a system shutdown or the requires specialist equipment for the repair. The opportunity is taken to do work on a second component which has not failed but is in a degraded state	Components on a circuit board. Components in a sub-sea production module
Common Cause	When one characteristic (eg materials, manufacturing, location, operation, installation maintenance) causes the degraded performance in several components	Incorrect maintenance done on several identical sensors Impact breaks the circuit on cables routed in the same way to different redundant channels
Queueing	Failed components all needing the same maintenance resource are queued. Then repaired in priority order	Limited number of maintenance teams, equipment or spares

Dynamic & Dependent Tree Theory (D²T²)

A Fault Tree Analysis Framework

Integration of Fundamental Quantification Methodologies

Fault Tree Analysis => Binary Decision Diagrams (BDD) Petri Nets Markov Methods

Binary Decision Diagrams – Top Event Probability

 $Q_{SYS} = q_A q_B + q_C - q_A q_B q_C$

University of Nottingham

IK | CHINA | MALAYSIA

$$Q_{SYS} = q_A q_B + q_A (1 - q_B) q_C + (1 - q_A) q_C$$

= $q_A q_B + q_C - q_A q_B q_C$

- Fast
- Efficient
- No need to derive the Min Cut Sets as an
- intermediate step

 $q_A(1-q_B)q_C + (1-q_A) q_C$

*** Disjoint paths to failure ***

Dependencies

- Model the dependencies and complexities using Petri Nets or Markov models
 - Always use the *simplest dependency model*

Binary Decision Diagrams

- Dependencies are just required to be considered on each path
- Path numbers can be very high so every effort needs to be made to *minimise the size of the BDD*
 - minimise the fault tree size using an effective modularisation
 - effective variable ordering

Basic Structure of the Code

Universitu of

Sub-Systems

- Primary Cooling Water System
 - Tank (T1), Pumps (P1,P2), Heat Exchanger (Hx1), Power Supply (B1)

Detection System

- Sensors (S1,S2), Computer (Comp)
- Secondary Cooling Water System
 - Tank(T2), Pump (P3), Heat Exchanger (Hx2), Valve (V1), Relay (R2), Power Supply (B1)
- Secondary Cooling Fan System
 - Fan (F), Motor (M), Relay (R1)

Universitu of

Complex Features

- Non-constant failure / repair rates
 - Motor M Weibull failure time distribution and a lognormal repair time distribution

Dependencies

- Pumps P1 & P2 if one fails it puts increased load (and increases the failure rate) of the other
- Heat Exchangers Hx1 & Hx2 when one needs replacement – needs specialist equipment and both are replaced
 - Pump P3 two events P3S and P3R are clearly dependent

Complexity and Dependency Models

Universitu of

Fault Tree Structure and Dependent Events

University of Nottingham

UK | CHINA | MALAYSIA

Contraction

Subsequent gates of the same type are contracted into a single gate

• Factorisation

Extracts factors expressed as groups of events that always occur together in the same gate type. The factors can be any number of events if they satisfy the following:

- All events in the group are independent and initiators
- All events in the group are independent and enablers.
- All events in the group feature a dependency and contain all events in the same dependency group.
- Extraction Restructure:
 A X B
 A X B

Contraction 1

University of

Nottingham

Modularisation (2)

 $Cf_4 = P3S + P3R$ (dependency group D3 – enablers)

Extract 1

Modularisation (3)

 $Cf_1 = P1.P2$ $Cf_2 = S1.S2$ $Cf_3 = Comp + R1 + Fan + Motor + R2 + T2 + V1$ $Cf_4 = P3S + P3R$

Contraction 2 -- No change

Modularisation (4)

 $Cf_1 = P1.P2$ $Cf_2 = S1.S2$ $Cf_3 = Comp + R1 + Fan + Motor + R2 + T2 + V1$ $Cf_4 = P3S + P3R$

Factorise 2

 $Cf_5 = Cf_1 + T1$ $Cf_6 = Cf_2 + Cf_3 + Cf_4$

Simplest possible Faunet representation

Modularisation (5) - Rauzy & Dutuit

University of Nottingham

UK | CHINA | MALAYSIA

$$Cf_{1} = P1.P2$$

$$Cf_{2} = S1.S2$$

$$Cf_{3} = Comp + R1 + Fan + Motor + R2 + T2 + V1$$

$$Cf_{4} = P3S + P3R$$

$$Cf_{5} = Cf_{1} + T1$$

$$Cf_{6} = Cf_{2} + Cf_{3} + Cf_{4}$$
OR
Hx2
Cf5
Hx1
Cf6
Cf6

Hx2

0

1

Modularisation

University of

Nottingham UK | CHINA | MALAYSIA

unrevealed

inspection

Basic Structure of the Code

Hx2

0

Cf6

1

j	path _j	Ipath _j	$Dpath_j^1$
1	<i>Cf5</i> ₁ , <i>Cf6</i> ₁	Cf5 ₁ , Cf6 ₁	
2	$Cf5_1, Cf6_0, Hx2_1$	Cf5 ₁ , Cf6 ₀	$Hx2_1$
3	$Cf5_0$, $Hx1_1$, $Cf6_1$	<i>Cf5₀,Cf6₁</i>	$Hx1_1$
4	Cf5 ₀ , Hx1 ₁ , Cf6 ₀ , Hx2 ₁	Cf5 ₀ , Cf6 ₀	Hx1 ₁ , Hx2 ₁

$$Q_{G1} = \sum_{j=0}^{npath} \left[P(Ipath_j) \cdot \prod_{k=1}^{ndep} P(Dpath_j^k) \right]$$

 $\begin{aligned} Q_{path1} &= P(Cf5_1). \ P(Cf6_1) = 0.0010830 \\ Q_{path2} &= P(Cf5_1). \ (1 - P(Cf6_1)). \ P(Hx2_1) = 8.8052957 \times 10^{-6} \\ Q_{path3} &= (1 - P(Cf5_1)). \ P(Cf6_1). \ P(Hx1_1) = 0.0 \\ Q_{path4} &= (1 - P(Cf5_1)). \ (1 - P(Cf6_1)). \ P(Hx1_1, Hx2_1) = 0.0 \end{aligned}$

- Top Event Frequency Calculations
- Qualitative FTA remains unchanged
- Importance measures
- Large FTA calculations
- Event Tree Analysis

- Dynamic and Dependent Tree Theory, D²T², enables the evaluation of fault trees which are not limited by the restrictions which apply to conventional fault trees solved by Kinetic Tree Theory.
- Retains the familiar and popular fault tree causality structure.
- Utilises BDDs, Petri Nets and Markov Models.
- The Petri net and Markov models dedicated to solve the complexities and dependencies are minimal in size.
- Modularisation of the fault tree minimises the size of the BDD utilised in the system evaluation (and therefore the number of paths).

Thank you for listening – any questions ?

Professor John Andrews Faculty of Engineering University of Nottingham

john.andrews@nottingham.ac.uk