

Next Generation Prediction Methodologies and Tools for System Safety Analysis

Professor John Andrews

PRIMA VERA Colloquium Wednesday 7th April

John Andrews - CV

- BSc Industrial Mathematics
- PhD 'A Finite Element Study of the Stress Distribution in Epicyclic Gears'

British Gas – Senior Scientist/Engineer in Risk Assessment Midlands Research Station

Loughborough University

- Mathematical Sciences Department Professor of Mathematical Engineering
- Aeronautical and Automotive Engineering Professor of Risk Assessment

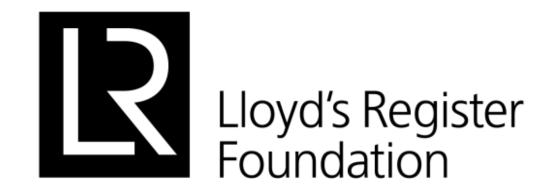
University of Nottingham (2009)

- Royal Academy of Engineering & Network Rail Professor of Infrastructure Asset Management
- Head of the Resilience Engineering Research Group
 - Mechanical, Materials and Manufacturing Engineering

Contents

Next Generation of Prediction Methodologies and Tools for Safety System Analysis Review of the Current Methodologies

- Project Overview
- Current Approaches
 - Fault Tree Analysis
 - Event Tree Analysis
- Alternative Approaches
 - Binary Decision Diagrams
 - Petri Net models
 - Integration of the methods
- Case Study
- Summary /Conclusions



Project Overview

Background & Objectives

Background

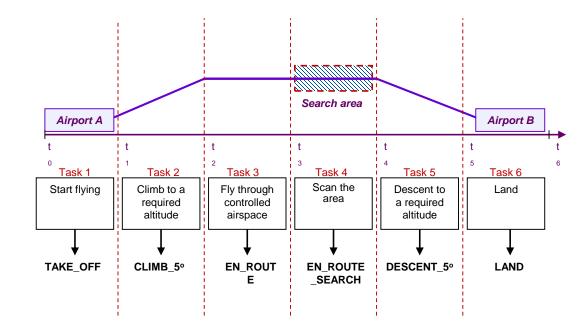
- Current Risk Assessment tools include: Fault Tree Analysis, Event tree Analysis
- The foundations of methodologies for safety critical systems were established in the 1960/70s.
 - Research has made considerable advances in the capabilities of analytical techniques since then.
 - Technology has advanced and system designs, their operating conditions and maintenance strategies are now significantly different to those of the 1970s.

Objectives

- This project challenge develop a single, generic methodology appropriate to meet the demands of modern industrial systems.
- Retain as much of the current methodology features as possible:
 - to reduce the learning curve for practitioners
 - increase the chances of acceptance.

Summary

- 4 phases
 - Phase 1 extend the capabilities of Fault Tree & Event tree Analysis
 - Phase 2 extend the capabilities of phased mission analysis
 - Phase 3 add dynamic capabilities to the modelling
 - Phase 4 integrate stochastic models of the system failures with discrete physical models (eg core damage events in nuclear reactors)



Industrial Partners

HS2

BAE SYSTEMS

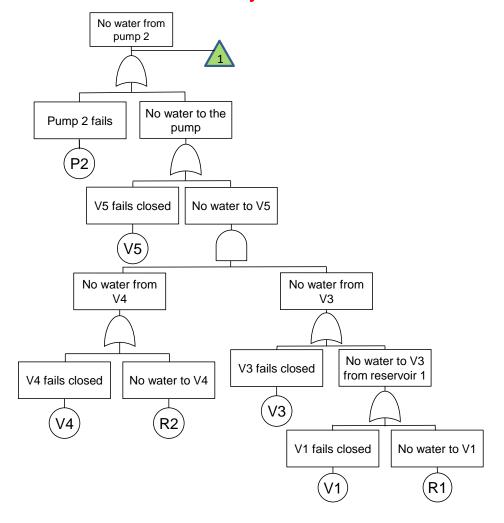
Current Approaches

Event Tree Analysis / Fault Tree Analysis

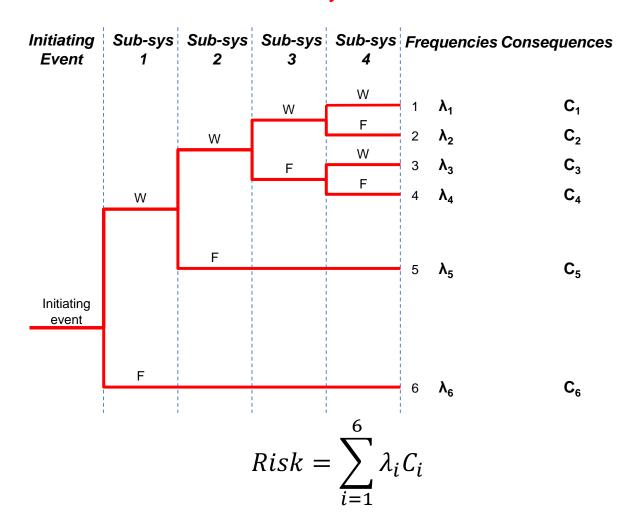
Traditional Approaches to Risk Modelling

Integrated Fault Tree Analysis / Event Tree Analysis Approach

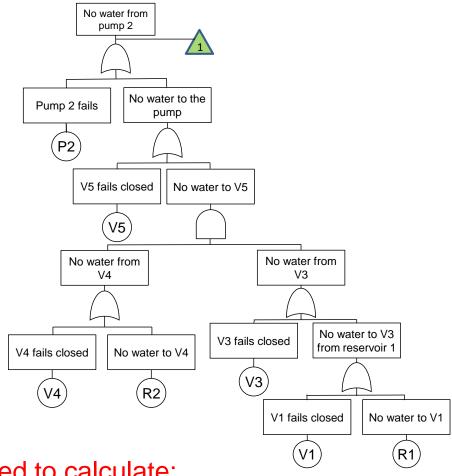
Fault Tree Analysis



Event Tree Analysis



Fault Tree Analysis



Used to calculate:

- Frequency of the initiating event
- Unavailability of enablers (responding) safety systems)

Method Assumptions / Limitations

- Component failures are independent
- Constant failure rates

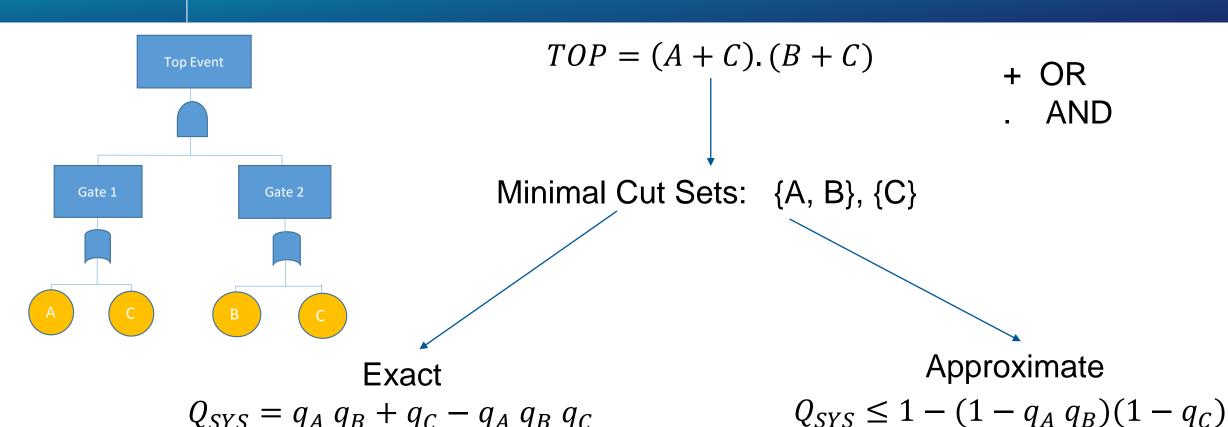
Component failure models

- Limited maintenance process detail
 - No Repair: $Q(t) = F(t) = 1 e^{-\lambda t}$
 - Revealed: $Q(t) = \frac{\lambda}{\lambda + \nu} \left(1 e^{-(\lambda + \nu)t}\right)$ Unrevealed: $Q_{AV} = \lambda \left(\frac{\theta}{2} + \tau\right)$

PROJECT AIMS

- Incorporate non-constant failure rates
- Incorporate dependent events
- Incorporate highly complex maintenance strategies

Fault Tree Analysis – Top Event Probability



Inclusion – exclusion expansion

$$Q_{SYS} = \sum_{i=1}^{N_C} P(C_i) - \sum_{i=2}^{N_C} \sum_{j=1}^{i-1} P(C_i \cap C_j) + \sum_{i=3}^{N_C} \sum_{j=2}^{i-1} \sum_{k=1}^{j-1} P(C_i \cap C_j \cap C_k) - \cdots + (-1)^{N_C+1} P(C_1 \cap C_2 \cdots \cap C_{N_C})$$

Minimal Cut Set Upper Bound

$$Q_{SYS} \le 1 - \prod_{i=1}^{N_c} (1 - P(C_i))$$

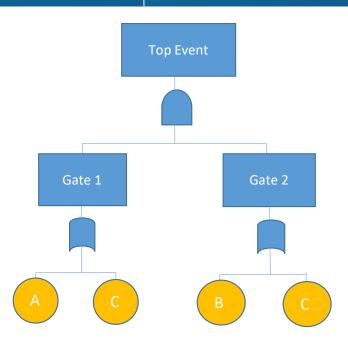
Initiator / Enabler events

Initiating Events: perturb system variables and place a demand on control / protection systems to respond

Enabling Events: are inactive control / protection systems which permit an initiating event to cause the top event

Critical System States: A critical state for a component i, is a state of the other components in the system such that the failure of component i causes the system to pass from the functioning to the failed state.

Fault Tree Analysis – failure intensity



Initiating events A, C $Q_{SYS} = q_A q_B + q_C - q_A q_B q_C$

$$TOP = (A + C) \cdot (B + C)$$
 + OR . AND

Minimal Cut Sets: {A, B}, {C}

Criticality Function for the initiators:

$$G_{i}(\boldsymbol{q}) = \frac{\partial Q_{SYS}}{\partial q_{i}}$$

$$G_{A}(\boldsymbol{q}) = q_{B} - q_{B} \ q_{C} = q_{B}(1 - q_{C})$$

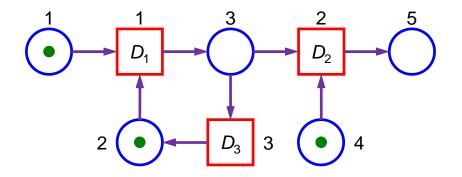
$$G_{C}(\boldsymbol{q}) = 1 - q_{A} \ q_{B}$$

$$w_{SYS}(t) = \sum_{i} G_{i}(\boldsymbol{q}).w_{i}(t)$$
initiators

Alternative Methodologies

Binary Decision Diagrams / Petri Nets / Markov Methods

Petri Net Basics and Definitions



 \bigcap' Places, p_i

Marked with tokens

1

Edges

• From place to transition or transition to place.

 D_j Transitions, t_i

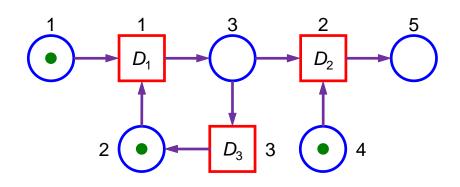
- Time delay D_i determines token movement.
- Type:
 - immediate if $D_i = 0$
 - timed if $D_j \neq 0$

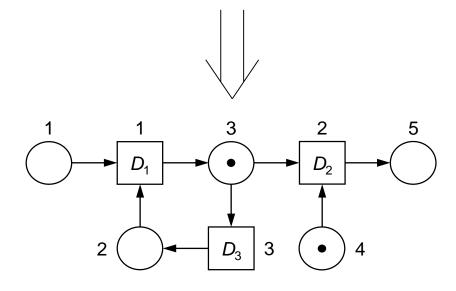
 Movement of tokens governed by the firing rule...

Petri Net Modelling

 If all input places of a transition are marked by at least one token then this transition is called enabled.

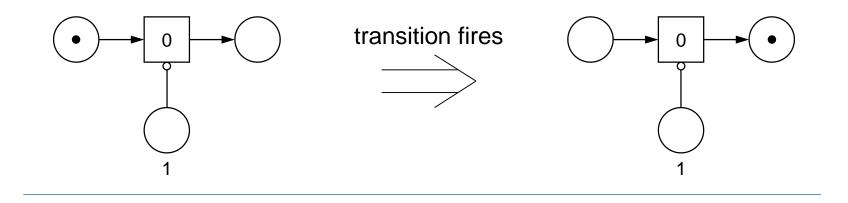
 After a delay D≥ 0 the transition fires. The firing removes one token from each of its input places and adds one token to each of its output places.

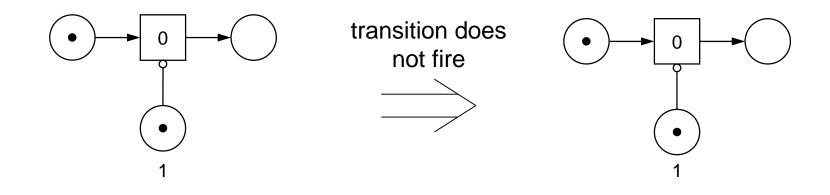




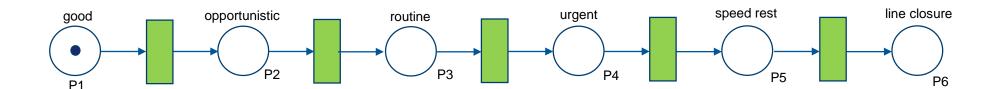
Inhibit Edges

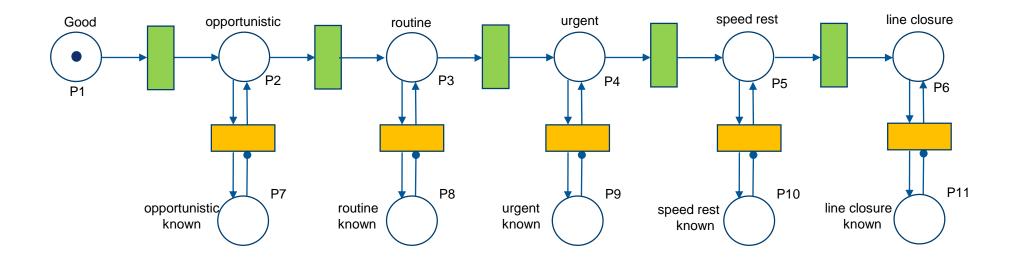
• Blocks a stream when the place it comes from is marked.



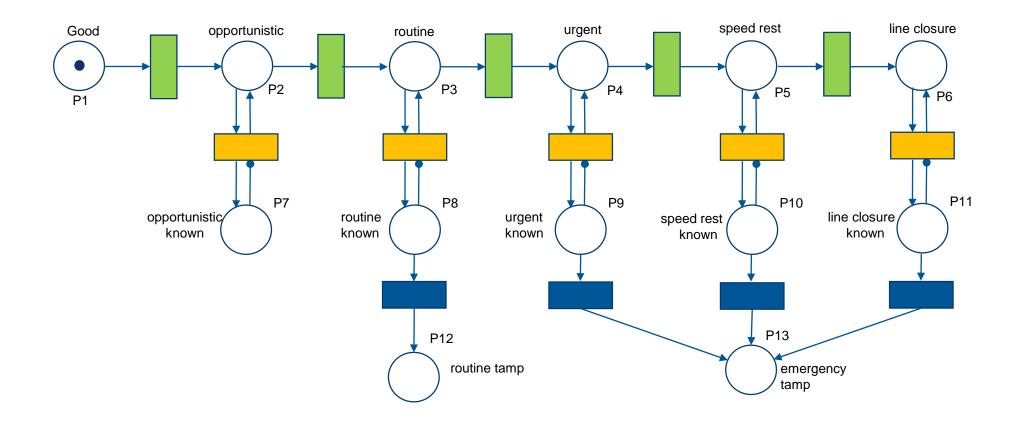


Example from the Railway Derailment Fault Tree

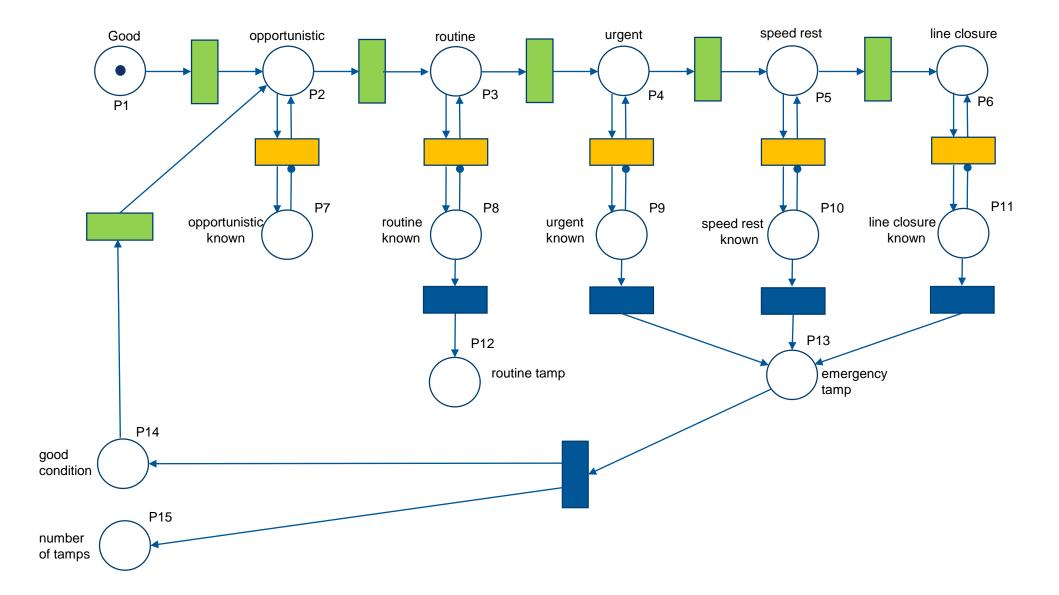




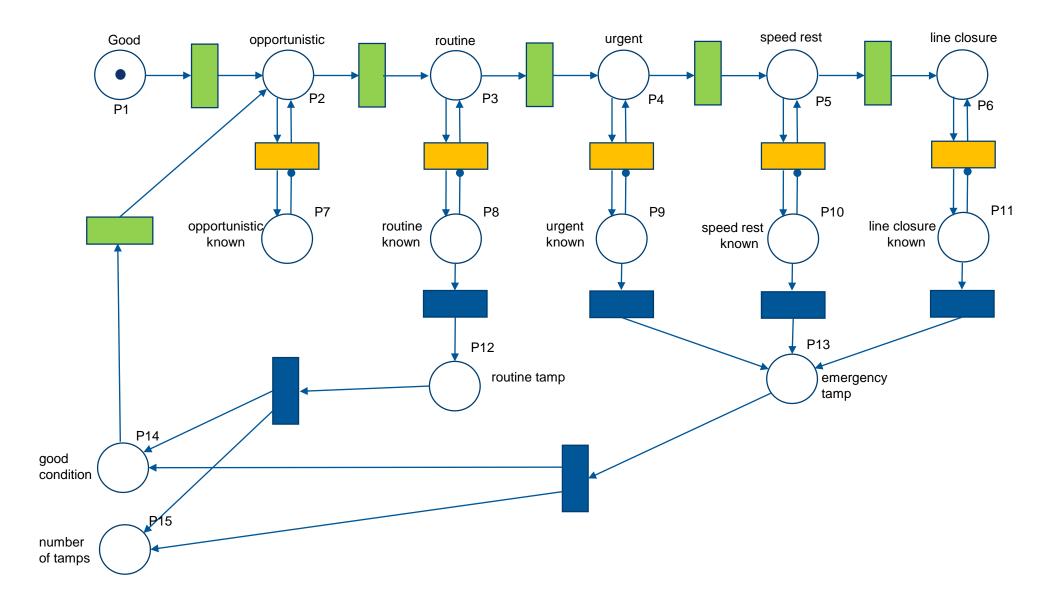
Inspection



Repair Options



Emergency Repair

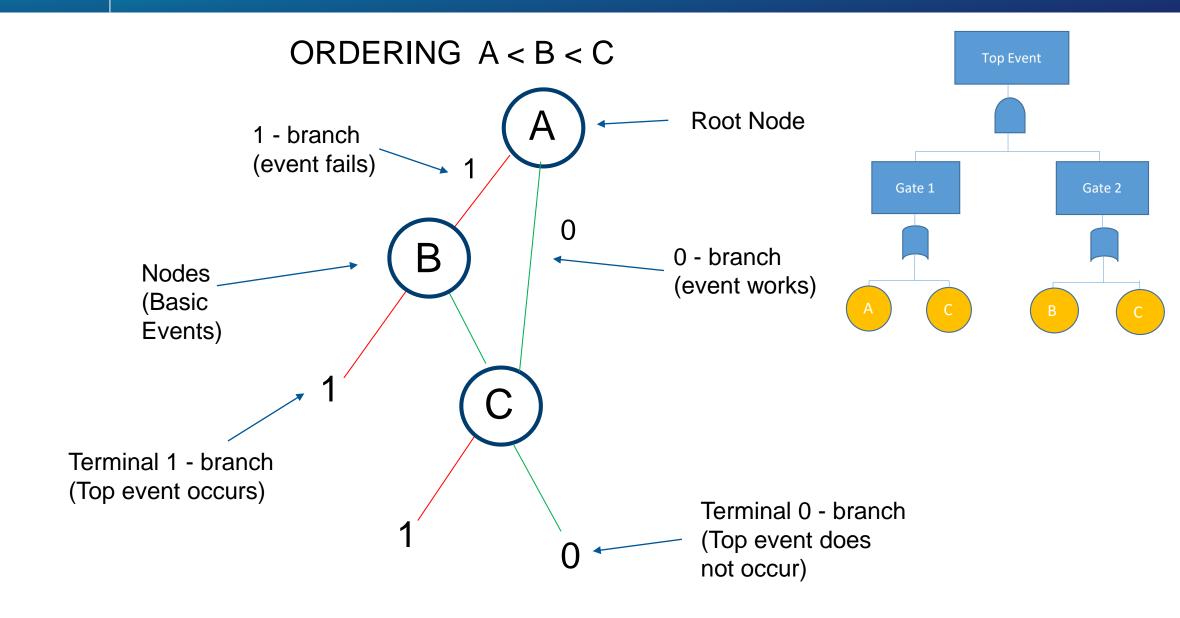


Routine Repair

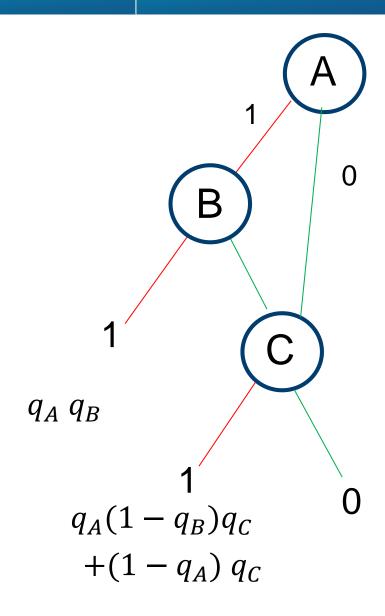
Model results – Asset Condition Performance

Condition	Condition Known?	Min Value	Average Value	Max Value	Comment
Good		92.66%	95.2%	97.31%	
Opportunistic		0.27%	0.42%	0.59%	
Routine		2.58%	3.11%	5.72%	
Urgent		1.12%	1.16%	1.18%	
Speed Restriction needed	Known	0.0%	0.005 %	0.018 %	
	Unknown	0.0%	0.043 %	0.056 %	Potential safety issue
Line Closure needed	Known	0.0%	0.005 %	0.018 %	
	Unknown	0.0%	0.057 %	0.07 %	Potential safety issue

Binary Decision Diagrams – Top Event Probability



Binary Decision Diagrams – Top Event Probability

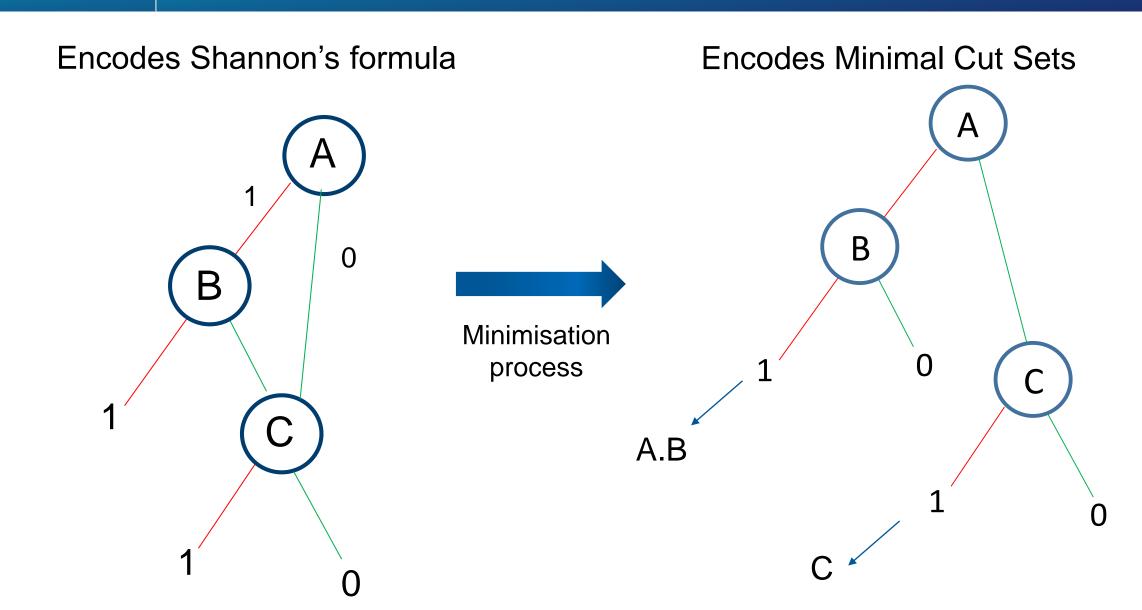


$$TOP = A.B + A.\overline{B}.C + \overline{A}.C$$
 + OR . AND

$$Q_{SYS} = q_A q_B + q_A (1 - q_B) q_C + (1 - q_A) q_C$$
$$= q_A q_B + q_C - q_A q_B q_C$$

- Exact
- Fast Efficient no need to get Min cut sets

Binary Decision Diagrams – Minimal Cut Sets



Binary Decision Diagram – Top Event Frequency

$$w_{SYS}(t) = \sum_{i} G_i(\mathbf{q}).w_i(t)$$
initiators

The Criticality Function, $G_i(q)$, is the probability that the system is in a critical state for component i such that the failure of component i causes system failure.

w_i(t) is the failure intensity of component i.

$$G_i(\boldsymbol{q}) = \frac{\partial Q_{SYS}}{\partial q_i} = Q_{SYS}(1_i, \boldsymbol{q}) - Q_{SYS}(0_i, \boldsymbol{q})$$

 $Q_{SYS}(1_i, q)$ probability that the system fails with component i failed

 $Q_{SYS}(0_i, \mathbf{q})$ probability that the system fails with component i working

Note: the Criticality Function is also known as Birnbaum's Measure of importance

Criticality Function: Routes to a terminal-1

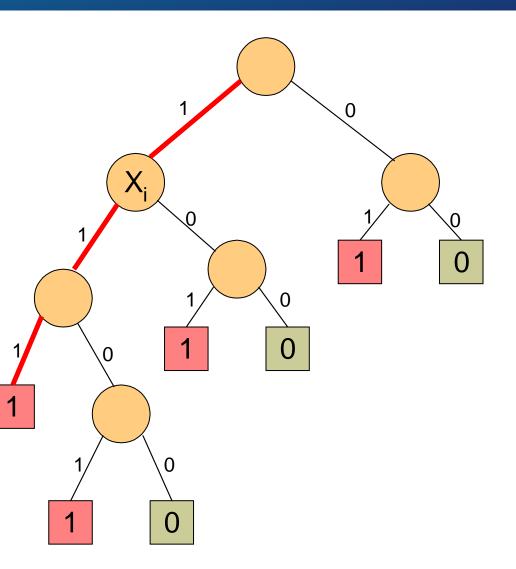
Criticality for X_i

Three Options:

 paths through X_i on its 1-branch to a terminal-1

 paths through X_i on its 0-branch to a terminal-1

3. paths which don't pass through X_i on way to a terminal-1



Criticality Function: Routes to a terminal-1

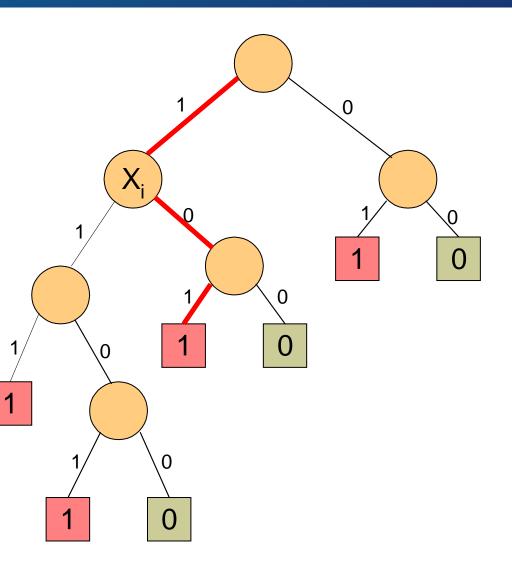
Criticality for X_i

Three Options:

 paths through X_i on its 1-branch to a terminal-1

2. paths through X_i on its 0-branch to a terminal-1

3. paths which don't pass through X_i on way to a terminal-1



Criticality Function: Routes to a terminal-1

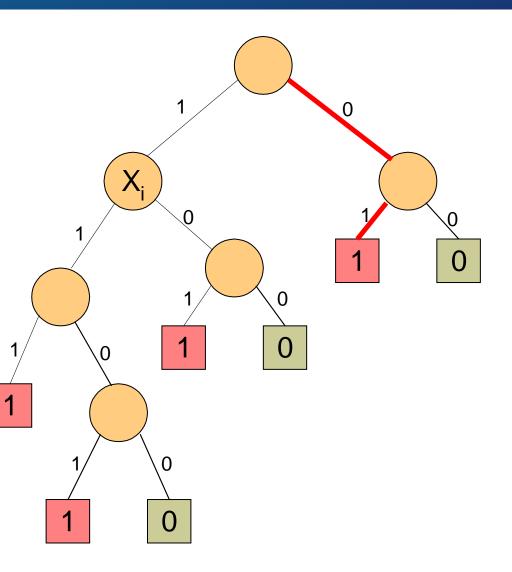
Criticality for X_i

Three Options:

 paths through X_i on its 1-branch to a terminal-1

2. paths through X_i on its 0-branch to a terminal-1

3. paths which don't pass through X_i on way to a terminal-1



Criticality Function

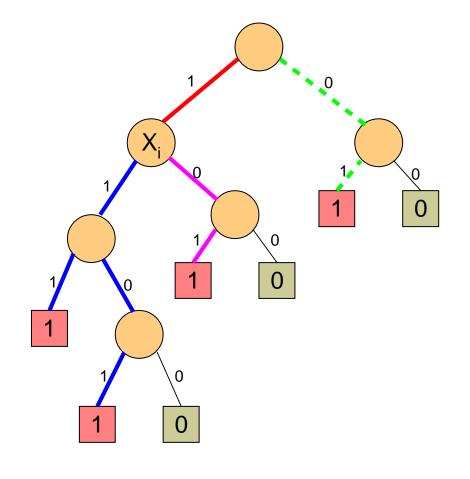
$$Q(1_{i},\underline{q}) = \sum_{i=1}^{n} (pr_{xi}(\underline{q}).po_{xi}^{1}(\underline{q})) + Z(\underline{q})$$

$$Q(0_{i},\underline{q}) = \sum_{i=1}^{n} (pr_{xi}(\underline{q}).po_{xi}^{0}(\underline{q})) + Z(\underline{q})$$

 $pr_{xi}(\underline{q})$ is the probability of the path section from the root node to node x_i .

 $po_{x_i}^1(\underline{q})$ is the probability of the path section from the 1 branch of node x_i to a terminal 1 node (excluding probability of x_i).

 $po_{xi}^{0}(\underline{q})$ is the probability of the path section from the 0 branch of node x_i to a terminal 1 node (excluding probability of x_i).



 $Z(\underline{q})$ is the probability of the paths from the root node to the terminal 1 node not passing through the node for variable x_i .

Criticality Function

$$G_i(\boldsymbol{q}) = Q_{SYS}(1_i, \boldsymbol{q}) - Q_{SYS}(1_i, \boldsymbol{q})$$

$$Q_{SYS}(1_i, \mathbf{q}) = \sum_{i=1}^{n} (pr_{xi}(\mathbf{q}). po_{xi}^1(\mathbf{q})) + Z(\mathbf{q})$$

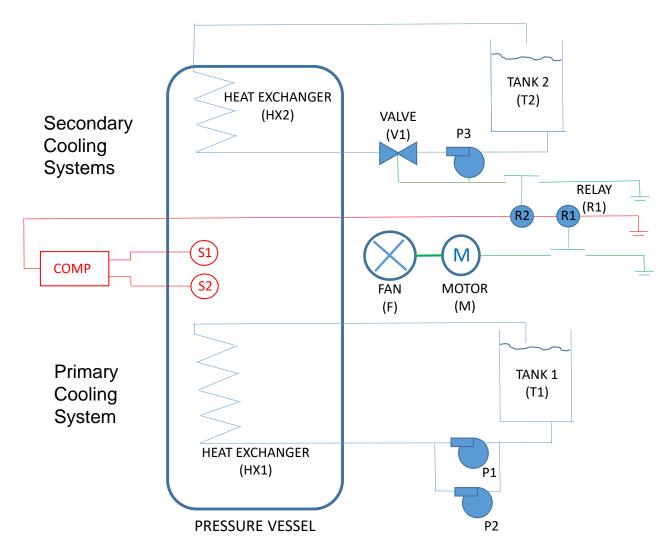
$$Q_{SYS}(0_i, \mathbf{q}) = \sum_{i=1}^{n} (pr_{xi}(\mathbf{q}). po_{xi}^{0}(\mathbf{q})) + Z(\mathbf{q})$$

$$G_i(\boldsymbol{q}) = \sum_{i=1}^n pr_{xi}(\boldsymbol{q}) [po_{xi}^1(\boldsymbol{q})) - po_{xi}^0(\boldsymbol{q})]$$

$$w_{SYS}(t) = \sum_{i} G_i(\mathbf{q}).w_i(t)$$
initiators

Case Study

Plant Cooling System and Features



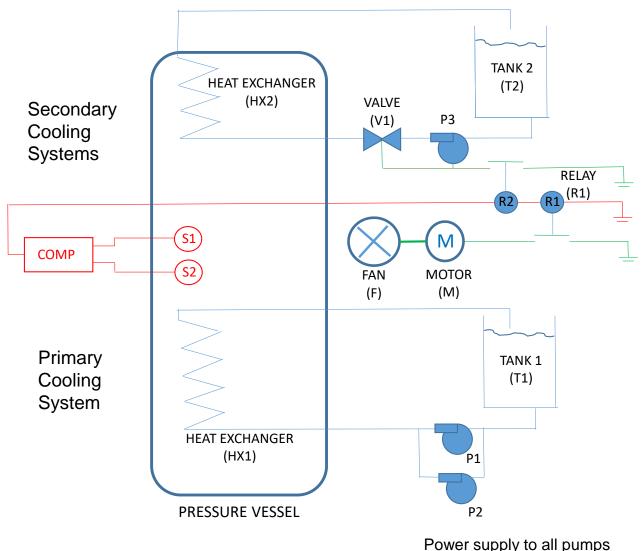
Power supply to all pumps and the valve – B1

Sub-Systems

- Primary Cooling Water System
 - Tank (T1), Pumps (P1,P2), Heat Exchanger (Hx1), Power Supply (B1)
- Detection System
 - Sensors (S1,S2), Computer (Comp)
- Secondary Cooling Water System
 - Tank(T2), Pump (P3), Heat Exchanger (Hx2), Valve (V1), Relay (R2), Power Supply (B1)
- Secondary Cooling Fan System
 - Fan (F), Motor (M), Relay (R1)

Plant Cooling System and Features

and the valve - B1



Complex Features

- Non-constant failure / repair rates
 - Relays R1 & R2 have a Weibull failure time distribution and a lognormal repair time distribution

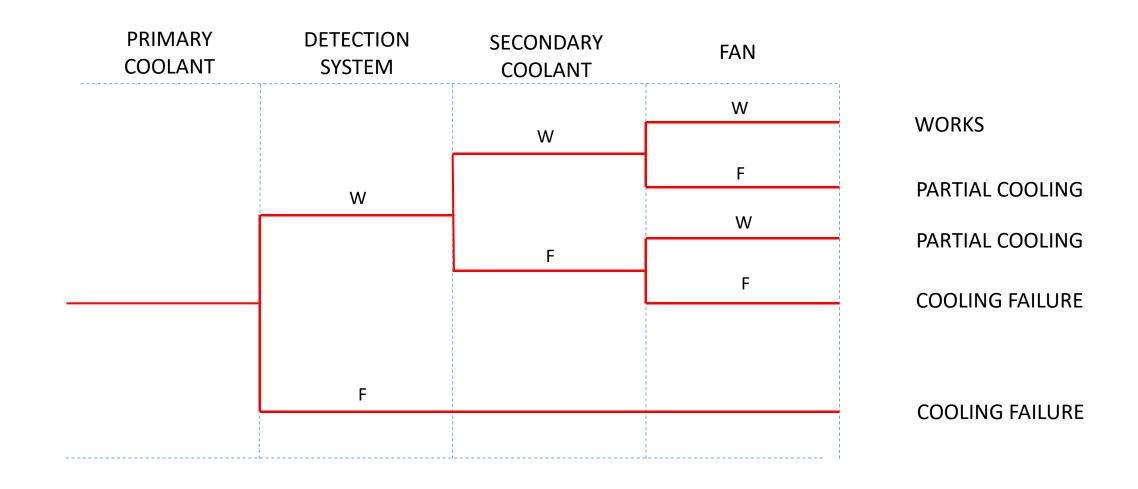
Dependencies

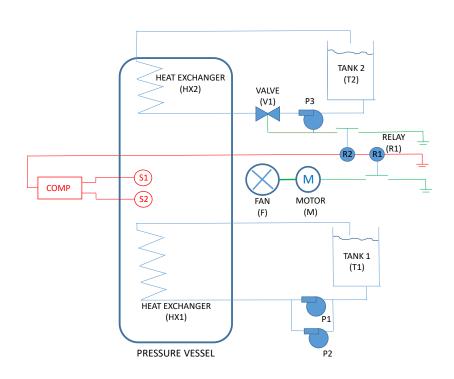
- Pumps P1 & P2 if one fails it puts increased load (and increases the failure rate) of the other
- Sensors, S1 and S2 have a common cause calibration failure
- Tanks T1 and T2, when one fails both are replaced

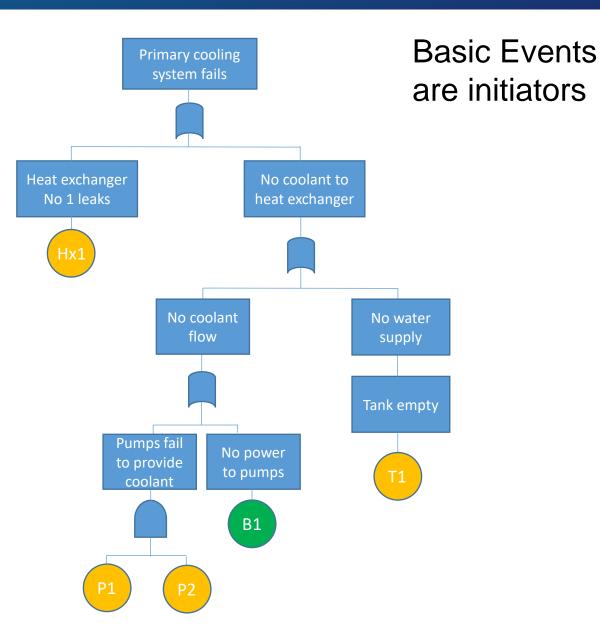
Maintenance process

 The motor, M, has a condition monitoring system with different maintenance actions depending on the condition state.

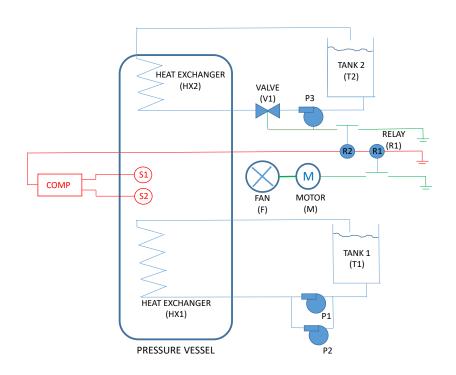
Event Tree Analysis

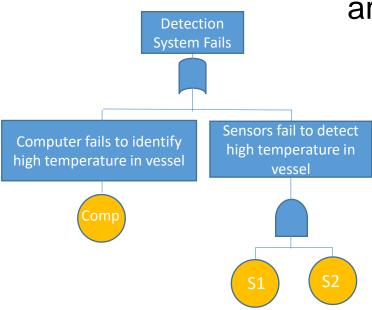




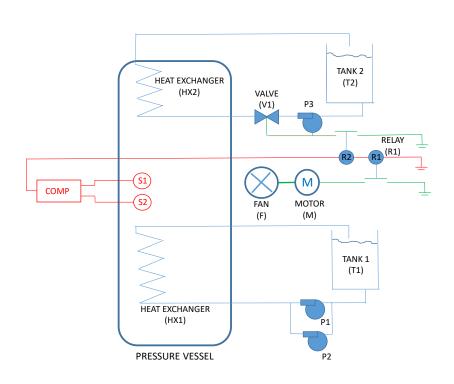


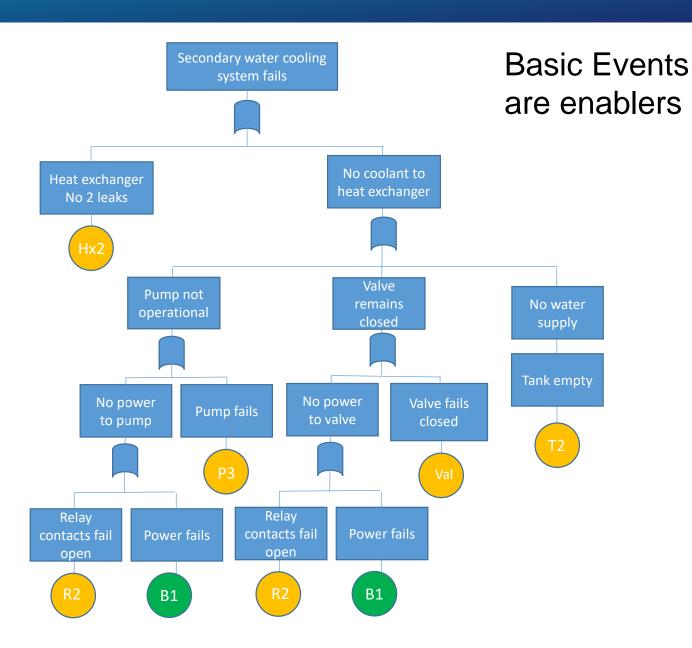
Fault Tree – Detection System



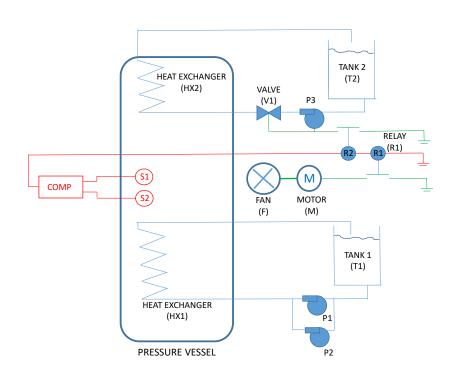


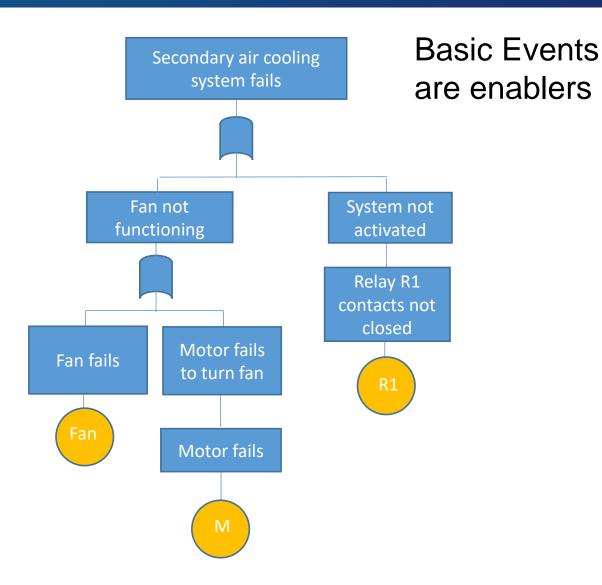
Fault Tree – Secondary Cooling Water System



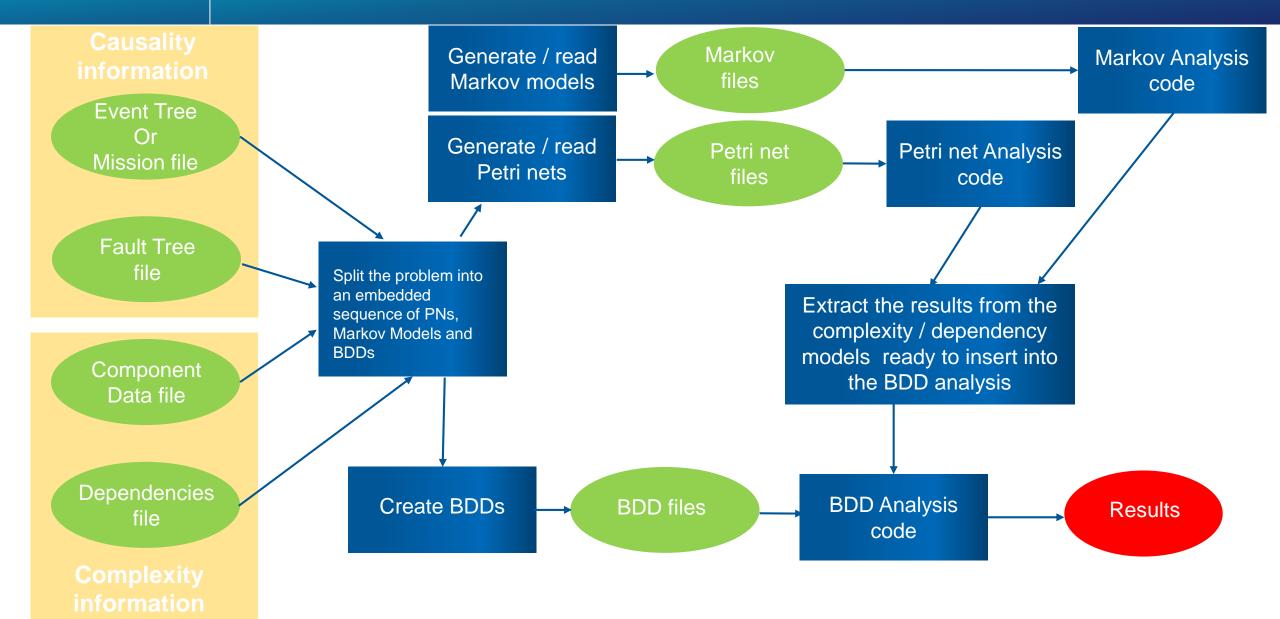


Fault Tree – Fan Cooling System





Basic Structure of the Code



Step 1

Associate the complex features with the fault trees

Identify the complexity / dependency models

Complex Features

Non-constant failure / repair rates

(DM1)

 Relays R1 & R2 have a Weibull failure time distribution and a lognormal repair time distribution

Dependencies

 Pumps P1 & P2 – if one fails it puts increased load (and increases the failure rate) of the other

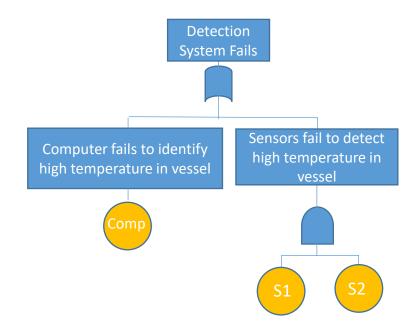
Sensors, S1 and S2 have a common cause calibration failure (DM3)

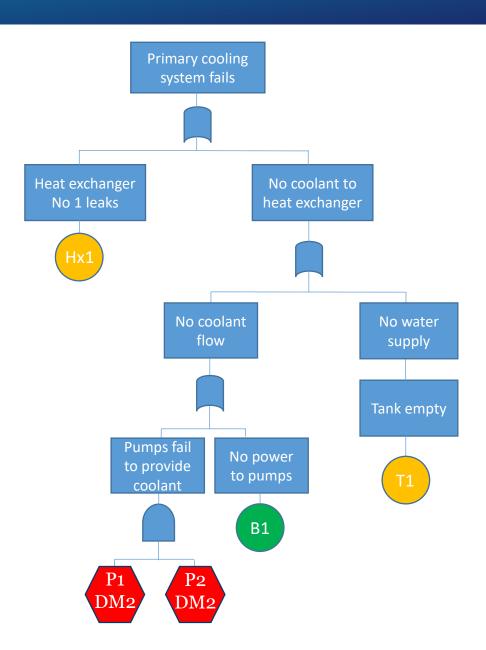
Tanks T1 and T2, when one fails both are replaced (DM4)

Maintenance process

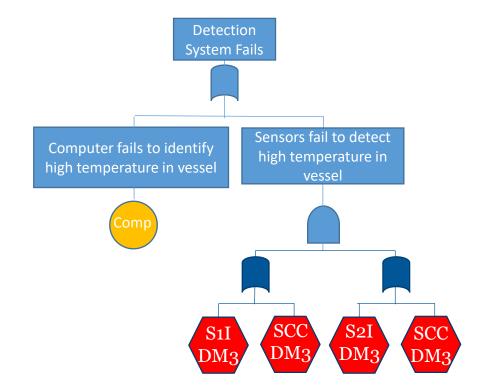
The motor, M, has a condition monitoring system with different maintenance actions depending on the condition state.

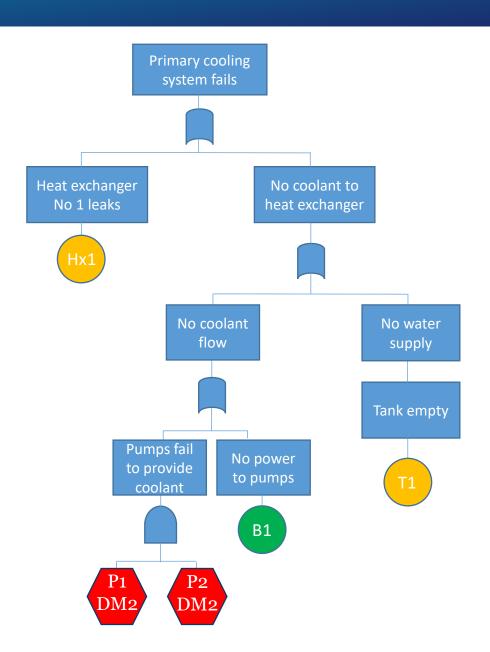
- Dependencies
 - Pumps P1 & P2 if one fails it puts increased load (and increases the failure rate) of the other (DM2)





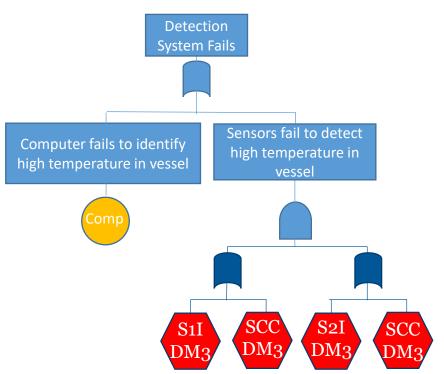
- Dependencies
 - Pumps P1 & P2 if one fails it puts increased load (and increases the failure rate) of the other (DM2)
 - Sensors, S1 and S2 have a common cause calibration failure (DM3)

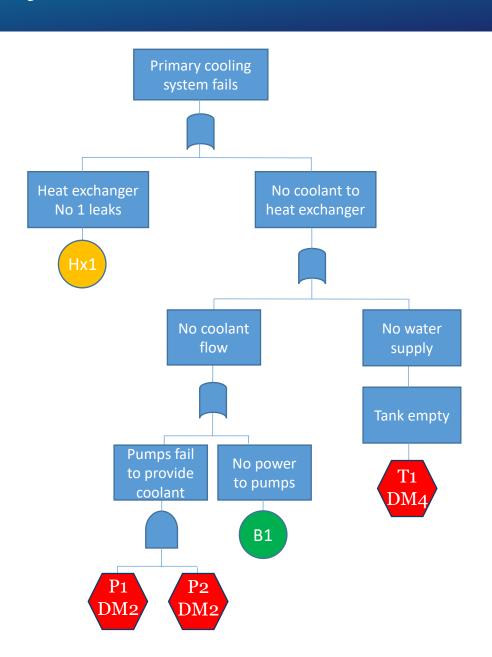




(DM4)

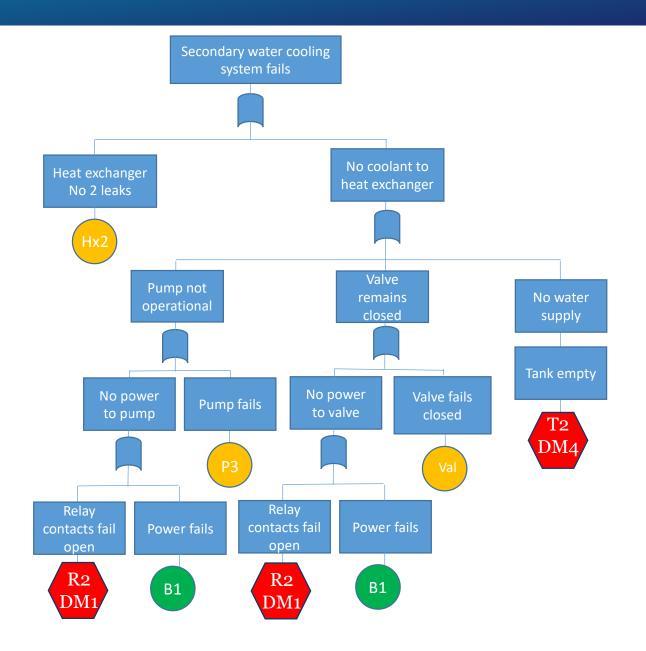
- Dependencies
 - Pumps P1 & P2 if one fails it puts increased load (and increases the failure rate) of the other (DM2)
 - Sensors, S1 and S2 have a common cause calibration failure (DM3)
 - Tanks T1 and T2, when one fails both are replaced





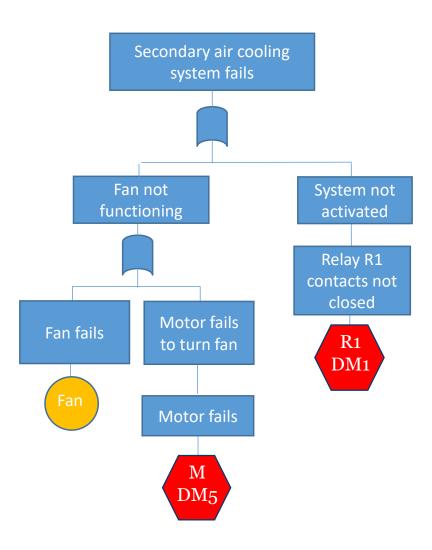
Fault Tree – Secondary Cooling Water System

- Non-constant failure / repair rates (DM1)
 - Relays R1 & R2 have a Weibull failure time distribution and a lognormal repair time distribution
- Dependencies
 - Tanks T1 and T2, when one fails both are replaced (DM4)



Fault Tree – Fan Cooling System

- Non-constant failure / repair rates (DM1)
 - Relays R1 & R2 have a Weibull failure time distribution and a lognormal repair time distribution
- Maintenance process
 - The motor, M, has a condition monitoring system with different maintenance actions depending on the condition state. (DM5)



Step 2

Calculate simple component failure models

Simple Component Failure Models

Revealed Failures - initiators

Component	Code	Failure rate (λ) Per year	Mean time to repair (τ) years	Failure Probability q= <mark>λ</mark>	Failure Intensity w=λ(1-q)
Heat Exchanger	HX1	0.125	5.5×10^{-3}	6.8703×10^{-4}	0.1249
Power Supply	B1	0.5	2.5×10^{-3}	1.248×10^{-3}	0.4994

Unrevealed Failures - enablers

Component	Code	Failure rate (λ) Per year	Mean time to repair (τ) years	Inspection int (θ) years	q=λ(θ/2+τ)
Heat Exchanger	HX2	0.125	5.5×10^{-3}	1	0.06319
Computer	Comp	0.4	5.0×10^{-3}	0.08	0.034
Pump	P3	0.05	0.08333	0.5	0.01667
Fan	Fan	0.06	5.0×10^{-3}	0.5	0.0153

Step 3

Build and analyse the dependency models

Identify the complexity / dependency models

Complex Features

Non-constant failure / repair rates

(DM1)

 Relays R1 & R2 have a Weibull failure time distribution and a lognormal repair time distribution

Dependencies

 Pumps P1 & P2 – if one fails it puts increased load (and increases the failure rate) of the other

Sensors, S1 and S2 have a common cause calibration failure (DM3)

Tanks T1 and T2, when one fails both are replaced (DM4)

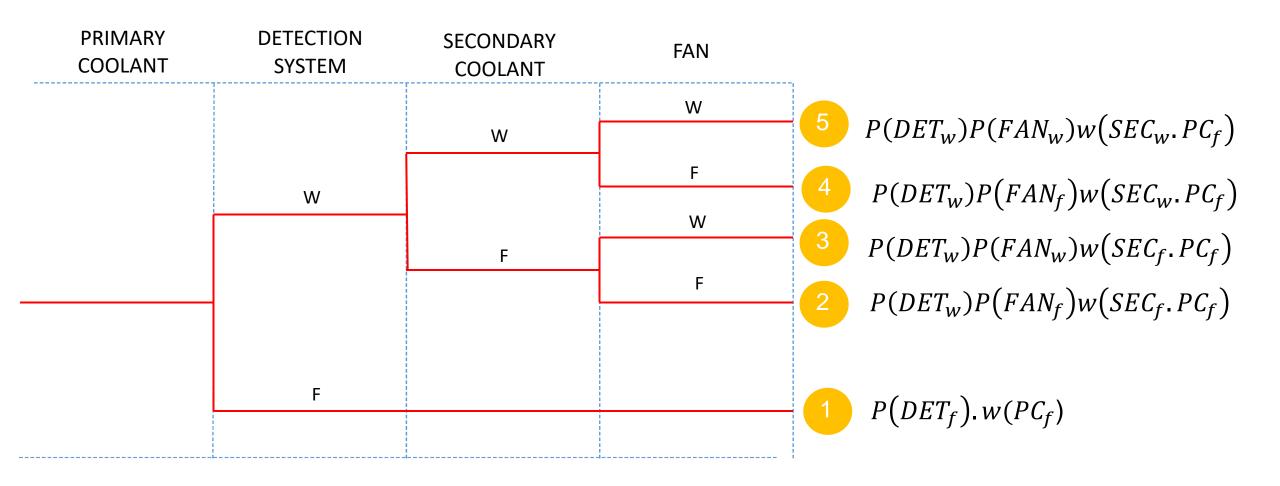
Maintenance process

The motor, M, has a condition monitoring system with different maintenance actions depending on the condition state.

Step 4

Consider the causes of each Event Tree outcome

Event Tree Analysis

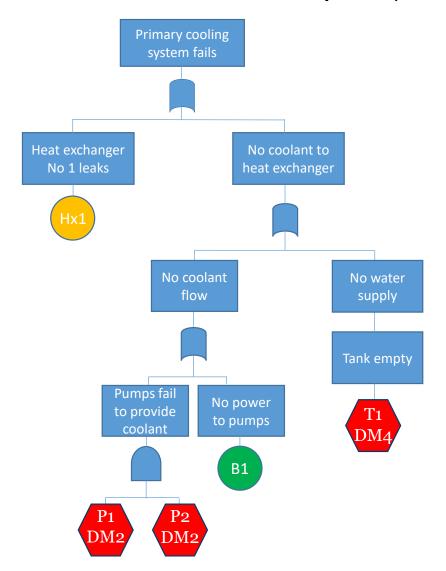


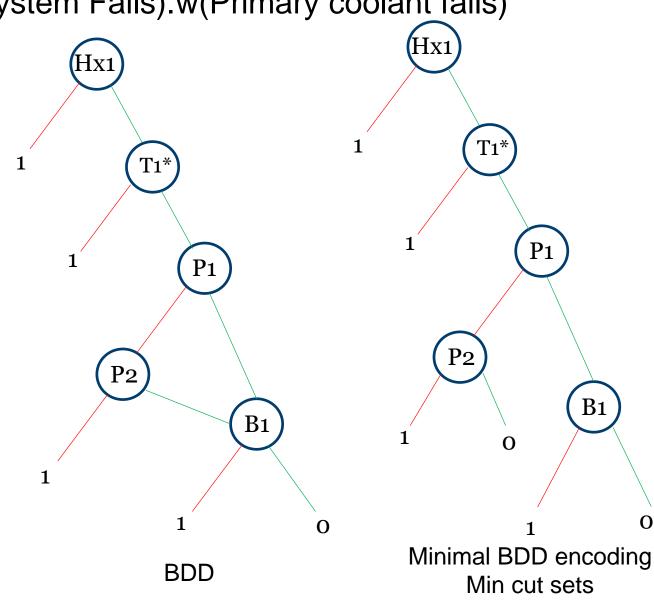
Step 4a Event Tree Outcome -1

Primary Coolant Failure intensity Detection System fails

Primary Coolant failure intensity

Freq1=P(Detection System Fails).w(Primary coolant fails)





failure intensity term for Hx1

$$w_{SYS}(t)dt = \sum_{\substack{i \ initiators}} G_i(\mathbf{q}(t)).w_i(t)dt$$

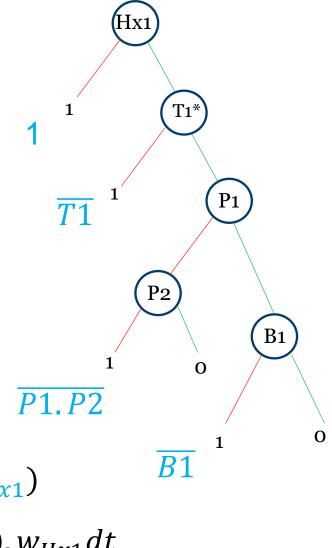
- For a system to be in a critical state for component i the following conditions must exist:
 - The system is not already failed (no min cut sets not containing i can exist)
 - All other events in min cut sets containing event i must have already occurred

P(the system is in a critical state for initiator Hx1 and Hx1 then occurs in [t,t+dt))

$$G_{Hx1}(q(t)).w_{Hx1}(t)dt = P(\overline{T1}.\overline{P1}.P2.\overline{B1}.w_{Hx1})$$

$$= P(\overline{T1}).P(\overline{B1}).P(\overline{P1}.P2)P(w_{Hx1})$$

$$= (1 - q_{T1}).(1 - q_{B1}).(1 - q_{P1}.P2).w_{Hx1}dt$$



P(the system is in a critical state for initiator i and i then occurs in [t,t+dt))

$$G_{Hx1}(q(t)).w_{Hx1}(t)dt = (1 - q_{T1}).(1 - q_{B1}).(1 - q_{P1.P2}).w_{Hx1}dt$$

Code	Failure Probability q= <u>λ</u>	Failure Intensity w=λ(1-q)
HX1	6.8703×10^{-4}	0.1249
B1	1.248×10^{-3}	0.4994

From DM4

P(T1) = 0.008053

From DM2

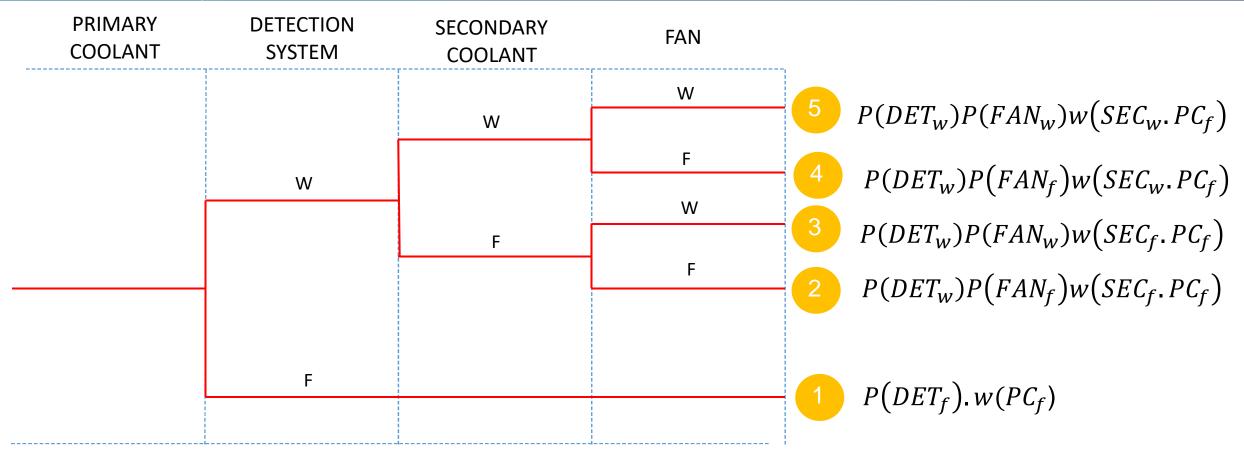
P(P1.P2) = 0.011764786

Similar Calculation for other initiators P1, P2, T1, B1

$$w_{SYS}(t) = \sum_{i} G_{i}(\boldsymbol{q}(t)).w_{i}(t)$$
initiators

Failure Intensity of the Primary Cooling System = 0.780261 per year

Repeating this process for all other events



$$P(DET_f) = 0.132513$$

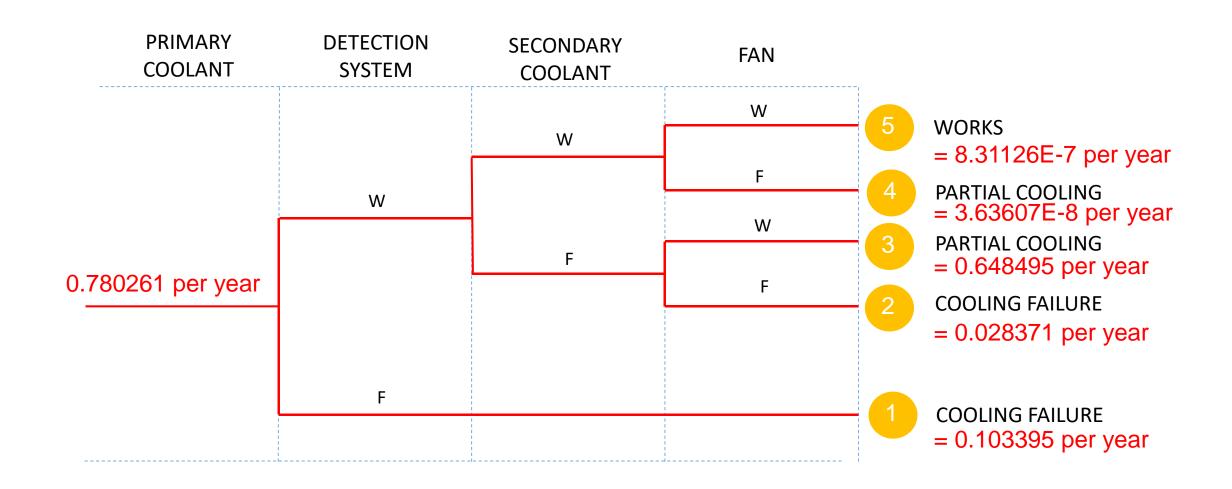
 $w(PC_f) = 0.780261$ per year

$$P(FAN_f) = 0.041915$$

$$w(SEC_f.PC_f) = 0.780260$$

$$w(SEC_w.PC_f) = 1.0e - 6$$

Event Tree Analysis



Summary / Conclusions

- First Phase of the Next Generation Risk Assessment Methodologies has been described
- This incorporates the following features into the modelling
 - Dependencies
 - Non-constant failure and repair rates
 - Complex maintenance strategies
 - A method has been developed which enables results from the PN/Markov models to be integrated into the BDDs
- Current work:
 - Modularisation methods
 - Building dependencies into the phased mission methodology
 - Solving case studies provide by the aero and railway industries

Thank you for your attention

Any Questions?