Dynamic Modelling of a Jet Engine Internal Air System

> 01/25/23, 15:45 Silvia Tolo*, PhD John Andrews*, Prof. Ian Tatcher** David Stamp** *University of Nottingham, UK

**Rolls-Royce, UK R A M S[®] 2023

The 69th Annual Reliability & Maintainability Symposium

Overview and Outline

- Introduction
- Case-study Overview
- Model
- Analysis
- Results
 - Failure Response
 - Degradation
- Conclusions

Introduction

High level of automation and control technology

- \rightarrow systems are un-negligibly dynamic
- \rightarrow human-technology interface
- \rightarrow maintenance strategies are increasingly complex
- System Degradation
 - \rightarrow system behaviour changes along its life-cycle
- Uncertainty and Modelling
 - \rightarrow conservatism comes at a cost

Case-Study Overview

- Risk of Engine Overheat
- Between Overhauls (20000 flight hours)
- On-wing Maintenance (7000 flight hours)
 - Four major contributions:
 - Pipe failure
 - Bleed Valves failure
 - Nozzle Guide Vanes
 - **Turbine Seal**

Model – Turbine Seal

Model – Turbine Seal

Model – Nozzle Guide Vanes

Model – Nozzle Guide Vanes

Model - Pipes

Model - Pipes

150 flying hours dispatch

On-wing maintenance replacement

- Electronic Engine Controller
- Detects BVs malfunction
- Cross-referenced channels

150 flying hours dispatch

On-wing maintenance

- Electronic Engine Controller
- Detects leaks
- Cross-referenced channels

150 flying hours dispatch

On-wing maintenance

Results – Failure Response

• 0.013% not repairable by maintenance

1.8

 $\times 10^4$

1.6

0.2

0.4

0.6

0.8

Flight Hours before Engine Overheat

1.2

1.4

0

0

Conclusions

- PN model of a jet engine internal air system
- On-wing and In-flight system behaviour
- Dynamic components degradation and dependencies
- System response to failure
- Insight system degradation
- Analysis of the dynamic progress of failure
- Future work will expand current model
 - (e.g., Torsion Box, Turbine and Compressor Case Plenums)

