

Objective(s)

- Chart a path forward to functional renal imaging
 - cover the state of the art in renal imaging
 - learn from other fields
 - FDA qualification of imaging biomarkers
 - other translational challenges

Workshop

- https://www.niddk.nih.gov/news/meetings-workshops/renal-imaging-workshop
- 2018 July 12, 13 on NIH campus
 - Program committee included members of NIDDK (4), NIBIB (1), Investigators with varied imaging expertise as related to applications to the kidneys (5), Intramural Imaging Investigators (2)
 - Plenary sessions
 - State of the art Functional Imaging
 - Concept to Clinic Cross-cutting issues in translation
 - Fibrosis
 - » Plenary talks from outside the field
 - Where are we going? Towards single nephron function and molecular imaging
 - Poster presentations (during lunch day 1)
 - Topics not covered by oral sessions
 - » Opportunity for junior investigators and trainees
 - Breakout sessions (free discussions among attendees)
 - » Accelerating transition from animals to humans
 - » Functional Imaging
 - Using fibrosis as a phenotype
 - Towards nephron endowment and single-nephron function
 - » Molecular imaging for phenotyping and target engagement

State of the art Functional Imaging

- Renal Functional MRI
 - Non-contrast methods
 - Techniques ready for translation
 - BOLD, ASL perfusion, Diffusion MRI
 - » Techniques needing work
 - Na MRI, Elastography, MTC or T1rho

CONCEPT TO CLINIC—CROSSCUTTING ISSUES IN TRANSLATION

- Development and Seeking Regulatory Approval for New Contrast Agents
 - Regulatory barriers different from radiopharmaceuticals
 - No venture funding to develop novel contrast agents
 - Need for changes in review process at NIH for grant reviews
- Contrast toxicity (GBCA)
- Machine Learning for Developing New Biomarkers from Imaging Data: Applications of Radiomics and Pathomics
 - Pathomics: quantifiable characterization of digital histology
- FDA Biomarker Qualification and MRI Imaging Parameters Qualified by the FDA (PKD Outcomes Consortium Measures)

Fibrosis

- Targeted contrast agents
 - Peter Caravan
 - contrast agent that targets oxidized lysine for quantifying fibrogenesis
 - Oxyamine-functionalized gadolinium chelate (Gd-OA) was used to identify fibrosis
 - Peter Boor
 - » elastin-specific MR contrast agent (ESMA), to measure fibrosis
- Non-contrast methods
 - MTC
 - Elastography (US & MRI)

Plenary Talks from Outside the Field

- MR Fingerprinting
- Imaging target engagement in oncology
 - Fibroblasts in tumors different from kidney
- Cardiac PET
 - Similarity of renal and myocardial fibrosis
 - » Preliminary feasibility of ACE imaging
 - flurobenzoyl-lisinopril autoradiography

Towards single nephron function and molecular imaging

- Nephron # and function in disease
 - mean number of nephrons in normal kidneys is approximately 900,000
 - association between the total nephron number and renal pathophysiology
 - glomerular size as a marker for kidney function
- CFE MRI
 - Mostly ex vivo data
 - Preliminary in vivo data in rodents
- Single kidney GFR by DCE-MRI
- Susceptibility MR
- Molecular imaging of kidneys

Summary from Breakout Sessions: Functional Imaging

- MRI and ultrasound best suited
 - MRI affords multiple parameters of interest
 - US +: low cost, widespread availability, and access to patients in intensive care units
 - US -: inherent subjectivity or operator bias
- Confounding effects major challenge
 - Does multi-parametric data mitigate this?
- Stress testing such as functional reserve
- Objective analysis methods
 - Mean±std. dev. too basic
 - Need to capture spatial variability (or patchiness)
 - Applications of Radiomics, Al needed to fully take advantage of spatio-temporal information
- With lack of biopsy correlations in human studies, need for pre-clinical studies exists
- Translation to clinical studies requires standardization/hybridization

Summary from Breakout Sessions: Fibrosis

- Desired ability to detect 25% cortical fibrosis
- Differentiation of glomerular, interstitial or peri-vascular is important
 - May be different processes, molecular signatures
 - Targeted contrast agents
- Challenges: complex structure including multiple compartments and cell types
- Targeting fibrogenesis may be important
- Macrophage detection with USPIO
- Need to correlate local changes with disease progression

Summary from Breakout Sessions: Translation for Animal to Patients

- Four areas of significance:
 - endogenous contrast MRI,
 - evaluation of the nephrogenic zone early in life,
 - » Nephron # at birth
 - glomerular counting by cationic ferritin,
 - 3D large volume imaging of biopsies
 - » Kidney Precision Medicine Project (KPMP)

Summary from Breakout Sessions: Molecular Imaging

- Targeted molecules to elucidate kidney biology and pathogenesis
- Challenges:
 - MI is inherently challenging to design, validate and interpret
 - Probes must be highly selective
 - Delivery of probes need to be highly predictable
 - Interference from metabolism and excretion of probe
 - Kinetic modeling to separate specific targeting from non-specific distribution
 - Safety concerns for human use
 - Multidisciplinary teams necessary

Summary from Breakout Sessions: Nephron Endowment & Single Nephron Function

- Genetic nephron endowment, loss and compensation after kidney injury, senescence – all important to identify risk of disease progression
- Nephron # is important in diabetes, hypertension, obesity, congenital anomalies, sickle cell disease, etc..
- Genetics + comorbid conditions determine nephron #
- Stereological techniques
 - Nephron endowment in humans
 - Implicated low nephron # in hypertension and CKD
- Lack of information about single nephron function in vivo
- CFE MRI allows for labeling individual glomeruli
 - In vivo imaging is challenging
 - » Ability to combine with DCE-MRI to evaluate single nephron function

Key Takeaways

- MRI and US most promising
 - Why PET has not been applied to kidneys?
- Stress testing such as functional reserve is important
- Nephron # and glomerular size are important
 - Can CFE MRI can be translated to humans?
- Targeted contrast agents for fibrosis detection
 - Only proof-of-concept data available in preclinical models
 - Regulatory approval is tough
 - Not sufficient funding mechanisms
- Analysis needs to grow beyond mean±sd.
 - Capture spatial variability (patchiness)
 - Role for AI?
- Some techniques are ready for multicenter trails
 - Thought was to find ways of adding imaging to existing trials (similar to COMBINE)
 - KPMP was thought to be an obvious choice

Acknowledgements

Daniel Gossett, Ph.D. from NIDDK for sharing the draft report from the workshop