# Clinical trial design for renal MRI studies

**Richard Haynes** 

Professor of Renal Medicine & Clinical Trials MRC Population Health Research Unit, University of Oxford Consultant Nephrologist Oxford Kidney Unit, Oxford University Hospitals



## Role of renal MRI

- As an endpoint in its own right
- As an "enrichment" strategy
- As a surrogate marker for clinical outcomes





- Likely to be exploratory academic trials of established drugs or mid-phase in new drug development
- Need efficient design and analysis



- Is the trial addressing a long-term (irreversible) or short-term (reversible) effect of the drug?
- Long-term effects may be best assessed by including a baseline scan







- If trial can only be small or only a sub-sample of a larger randomized population, baseline scan allows ANCOVA analysis
  - Most statistically efficient
  - Accounts for any random differences at baseline
- However, does increase number of scans: similar statistical power from same number of scans in double number of participants



- Short-term reversible effects most efficiently tested with cross-over design
- Each participant acts as their own control



## MRI as an enrichment strategy

- Randomized trials attempt to recruit populations at risk of events of interest
- Trial populations may select on basis of a biomarker which is associated with (does not necessarily cause) a higher risk of the event of interest
  - e.g. albuminuria in trials of CKD progression





### MRI as an enrichment strategy

• Total kidney volume approved by FDA for use as an enrichment biomarker in trials of ADPKD

|                                      | Model with age and eGFR alone | Model with age, eGFR<br>and TKV <sup>+</sup> |
|--------------------------------------|-------------------------------|----------------------------------------------|
| Predicted event rate over<br>3 years | 9.1%                          | 11.0%                                        |
| Number needed to recruit*            | 11                            | 9                                            |
| Number needed to screen*             | 13                            | 25                                           |

\* For one event in 3 year follow-up
+ Age 20-50, eGFR >50 mL/min/1.73m<sup>2</sup>, TKV >1 litre





- Significant interest in identifying valid surrogate markers of end-stage kidney disease because of rarity of event and/or long follow-up times required
- FDA/EMA have recently approved 40% decline in eGFR
- More controversy around changes in albuminuria



- Surrogate marker has a specific definition and to be a "true" surrogate a biomarker should fulfil the Prentice criteria
  - 1. The treatment has an effect on the clinical outcome (e.g. ESRD)
  - 2. The treatment has an effect on the surrogate
  - 3. The surrogate is associated with the clinical outcome
  - 4. The treatment effect on the clinical outcome is captured by the surrogate (or, adjusting the treatment effect on the clinical outcome for the surrogate substantially attenuates the treatment effect)







MRC

- Surrogate markers are disease- <u>and</u> treatment-specific
- Require appropriately-sized epidemiological studies to confirm association between surrogate and clinical outcome
- Require clinical outcome trials to prove the effect of treatment on the clinical outcome
- Require measurement of the surrogate within these trials



## Clinical trials and renal MRI

- Trials are possible and with careful design and analysis can be done cost-effectively
- Renal MRI may have a role in patient selection, but may not always be efficient
- Renal MRI could be a surrogate marker and used in early phase drug trials, but more work needed

