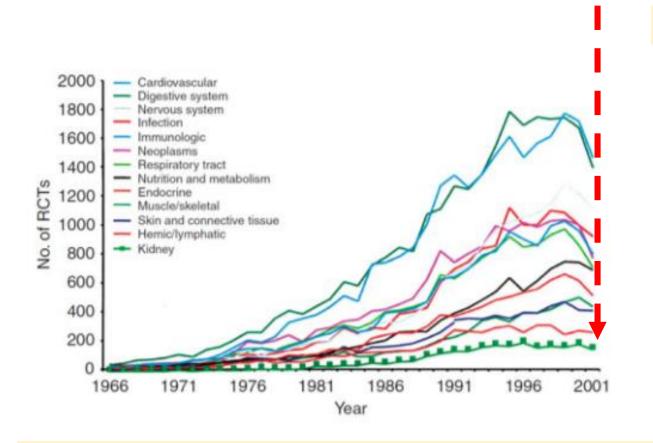


MRI in (Clinical) Drug Development Pathways


Robert Unwin

AstraZeneca Biopharmaceuticals R&D (CardioVascular, Renal & Metabolism – CVRM)

and

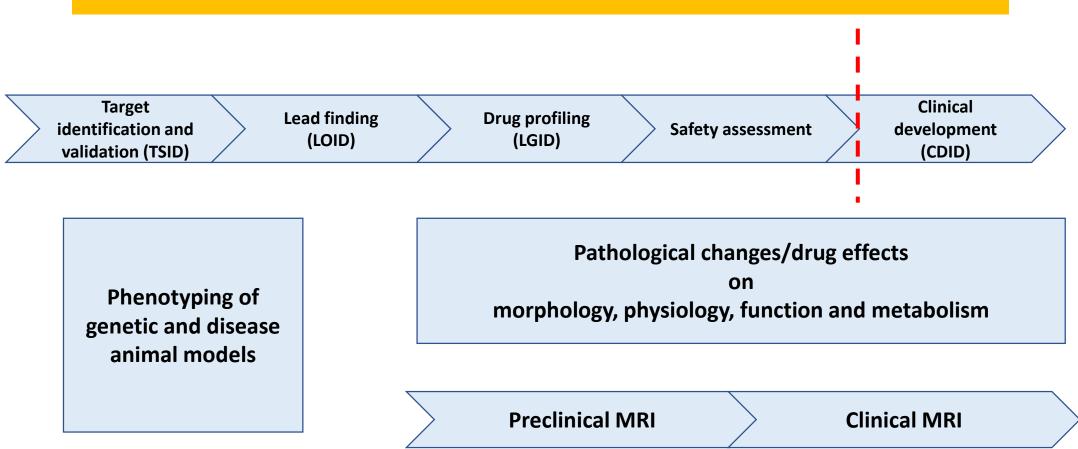
Department of Renal Medicine, UCL

A relative dearth of clinical trials in nephrology: why?

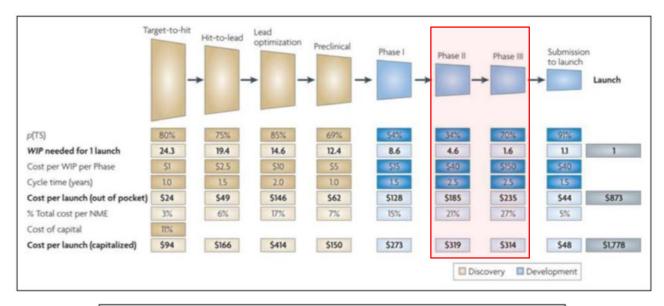
Note relatively small sample sizes – includes all study types

Current Phase 3 trial end-points for treatment interventions in CKD:

- death
- dialysis/transplantation (renal replacement)


(May take >5 years)

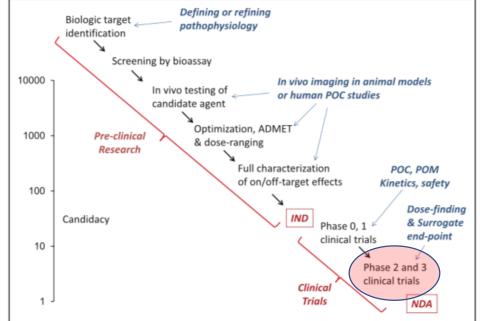
- doubling of serum creatinine (57% decline in eGFR 40% decline now accepted delay in reaching)
- (albuminuria, eGFR slope, and albuminuria + eGFR slope are under consideration)


(Kovesdy, NDT 2019)

Generic flow of a drug development project from target identification to registration (at the end of clinical development)

- use of MRI

Cost and attrition



Progression from Phase 2 to 3 is often the challenge and 'bottleneck'

High attrition rate

(Linder & Link, Circ Cardiovasc Imaging 2018)

Lessons from AstraZeneca's drug pipeline (2005-10)

Right target

Genetic suppor

Efficacy biomar

- Strong link between target and disease
- Differentiated efficacy
- Available and predictive biomarkers

Right tissue

- Adequate bioavailability and tissue exposure
- Definition of PD biomarkers
- Clear understanding of preclinical and clinical PK/PD
- Understanding of drug-drug interactions

Right safety

- Differentiated and clear safety margins
- Understanding of secondary pharmacology risk
- Understanding of reactive metabolites, genotoxicity, drug-drug interactions
- Understanding of target liability

Right patients

- Identification of the most responsive patient population
- Definition of risk-benefit for given population

Right commercial potential

- Differentiated value proposition versus future standard of care
- Focus on market access, payer and provider
- Personalized health-care strategy, including diagnostic and biomarkers

Need for:

Non-invasive disease classifiers (diagnostic biomarkers)

Means to stratify patients
Reliable surrogate end-points

(prognostic biomarkers)

Efficacy biomarkers

(treatment response biomarkers)

 \square Closed \square Active or successful

Non-proteinuric CKD

or

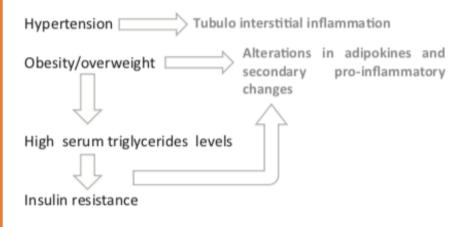
What do we do if we cannot use and monitor albuminuria?

Why do we use albuminuria/proteinuria?

- It is a feature of glomerular disease pathology and is characteristic of many patients with DKD
- It is easily measured in urine (usually as UACR or UPCR)
- It has been shown to be linked to CKD (DKD) progression (cause and/or effect?)
- It is assumed that its reduction is a marker of a treatment benefit
- It is assumed to link animal models with human disease (mainly DKD)
- While not (yet) a regulatory approved end-point in clinical trials*, it is used in Phase 2 to build confidence for Phase 3

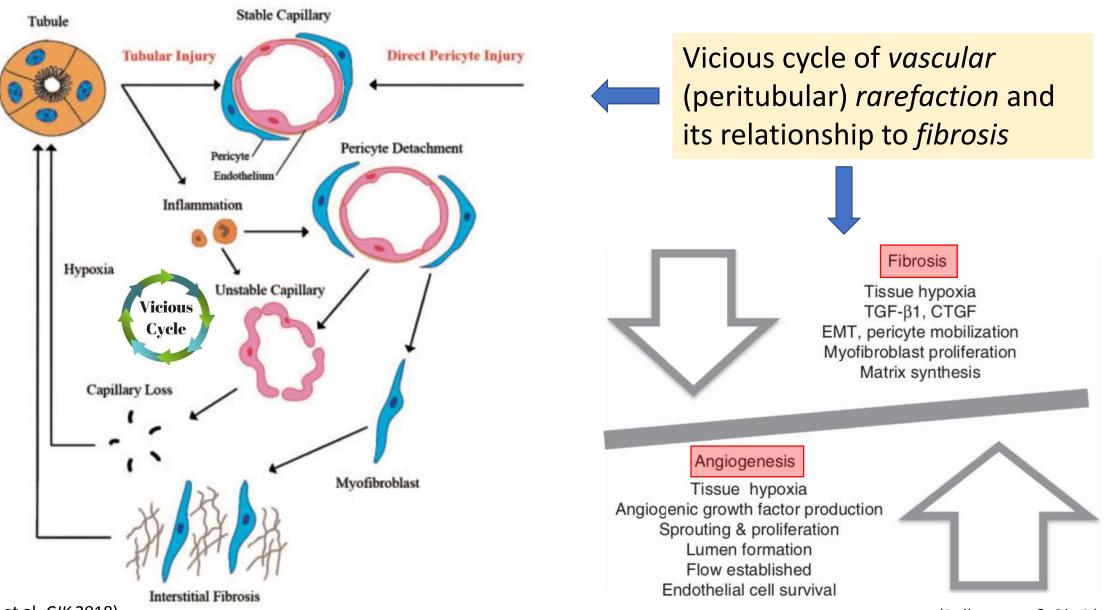
However:

- Glomerular disease with albuminuria/proteinuria accounts for only around 20% of CKD patients reaching ESRD.
- 60% of CKD is non-proteinuric
- 20-30% of DKD is non-albuminuric
- In general, those with DKD and albuminuria progress faster toward ESRD than those without
- Both groups more likely to reach ESRD than to die of a CV-related event


^{*}Proteinuria reduction is accepted as a treatment end-point in FSGS, membranous and IgA

Proteinuric and non-proteinuric CKD: hypothesized disease mechanisms

Nephrotoxic mechanism(s) of proteinuria


++RANTES ++ROS cubilin Endothelin Renal tubule cell (luminal side) megalin MCP-1 TGF-β NF-kβ Pro-inflammatory cytokines

Risk factors and mechanisms in nonproteinuric renal diseases

Glomerular hyperfiltration at single nephron level in individuals with low nephron mass

Detecting renal vasculopathy – a key driver in CKD

(Afsar et al, CJK 2018)

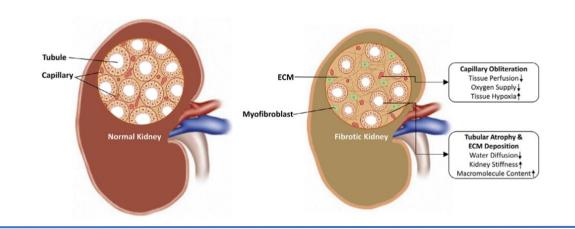
MRI's potential in CKD drug development

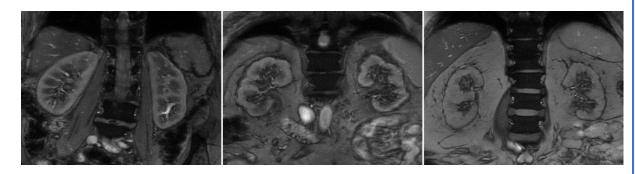
Clinical assessment of renal function currently relies on:

- serum creatinine
- albuminuria/proteinuria
- renal ultrasound (structure and size)
- renal biopsy*

Problems:

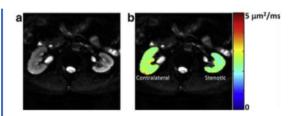
- limited reproducibility need for large cohorts
- limited sensitivity to changes in disease progression
- limited prognostic value
- limited application to patient stratification
- limited justification for renal biopsy and its risks

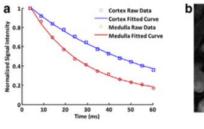

Potential value of MRI:

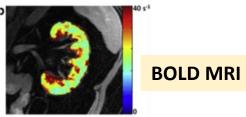

- single integrated method for structure and function
- high precision and likely (serial) reproducibility
- potential for adaptation to drug mechanism of action
- early detection and monitoring of disease progression
- potential for 'stress testing' (cf. CFR in cardiology)

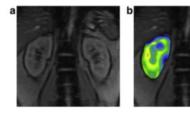
MRI Sequence	Principle	Advantages	Disadvantage	Application
Conventional DWI	Quantifies displacement of water molecules to evaluate tissue microstructure	Choice of b-values is easy Shorter scan time	Motion-related artifacts Information of micro- perfusion and water molecules diffusion cannot be separated	Monitor allograft function Evaluate interstitial fibrosis and tubular atrophy
IVIM DWI	Separately estimates tissue micro-perfusion and water molecules diffusion to assess tissue microstructure	Evaluates micro-perfusion and water diffusion separately	Motion-related artifacts Choice of b-values is not standardized	Monitor allograft function Evaluate interstitial fibrosis and tubular atrophy
DTI	Investigates directionality of water molecular motion due to anisotropy of tissue	Accounts for directionality of water diffusion, such as along renal tubules	Chemical shifts and susceptibility image artifacts FA is non-specific for pathophysiological change	Monitor allograft function Evaluate interstitial fibrosis and tubular atrophy
DKI	Calculates non-gaussian behavior of water diffusion to more accurately reflect tissue microstructural complexity	Accounts for non-gaussian motion of water molecular	Low SNR	Evaluate interstitial fibrosis and tubular atrophy
BOLD	Quantifies tissue oxygenation based on paramagnetic properties of blood deoxyhemoglobin	Evaluates tissue oxygen bioavailability	R2* cannot distinguish causes of oxygenation changes	Monitor allograft function
ASL	Quantifies perfusion by selectively labeling inflowing blood	Evaluates tissue perfusion without exogenous contrast materials	Low SNR Perfusion is affected by other factors such as orientation of imaging slice, and renal cortical T1 values	Monitor allograft perfusion
MRE	Quantifies viscoelastic properties of tissues based on their response to external mechanical vibration	Quantifies tissue fibrosis	Kidney stiffness measurement is multifactorial, and is affect by renal perfusion	Quantify renal fibrosis
MTI	Evaluates macromolecule (i.e., collagen) based on interactions of protons from free water and macromolecules	Quantifies tissue fibrosis	MTR is affected by structural and functional alterations besides fibrosis Low SNR	Quantify renal fibrosis

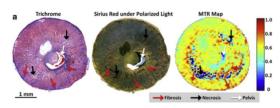
ASL = arterial spin labeling, BOLD = blood oxygen-level-dependent, DKI = diffusion kurtosis imaging, DTI = diffusion tensor imaging, DWI = diffusion-weighted imaging, FA = fractional anisotropy, IVIM = intravoxel incoherent motion, MRE = magnetic resonance elastography, MTI = magnetization transfer imaging, MTR = magnetization transfer ratio, SNR = signal-to-noise ratio

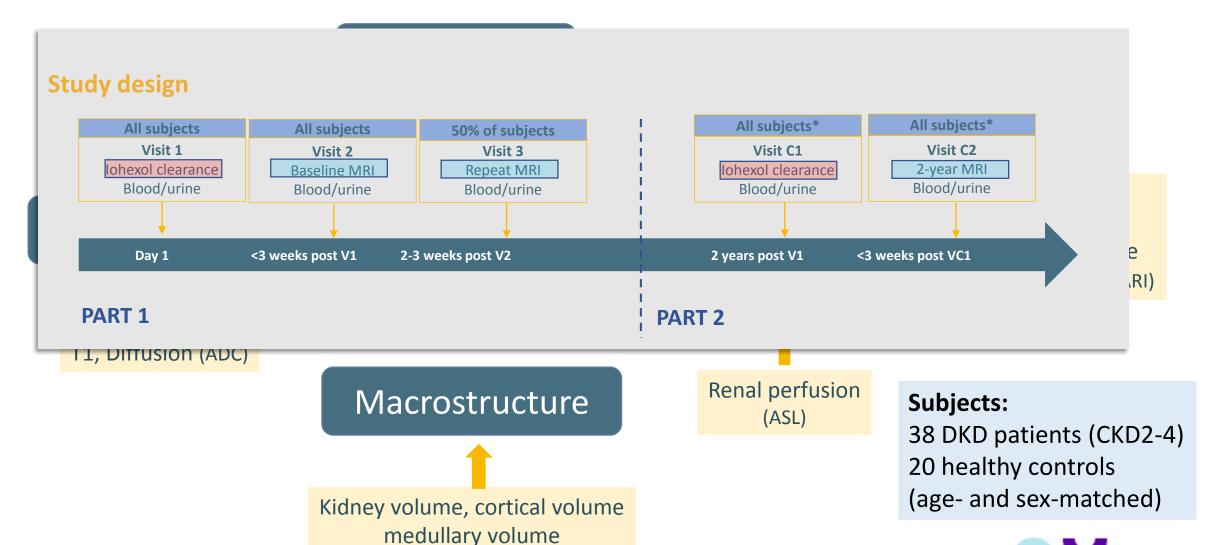

MRI and renal fibrosis




Normal (eGFR>90 ml/min) CKD3 (eGFR<60 ml/min)


CKD4 (eGFR<30 ml/min)


Diffusion MRI

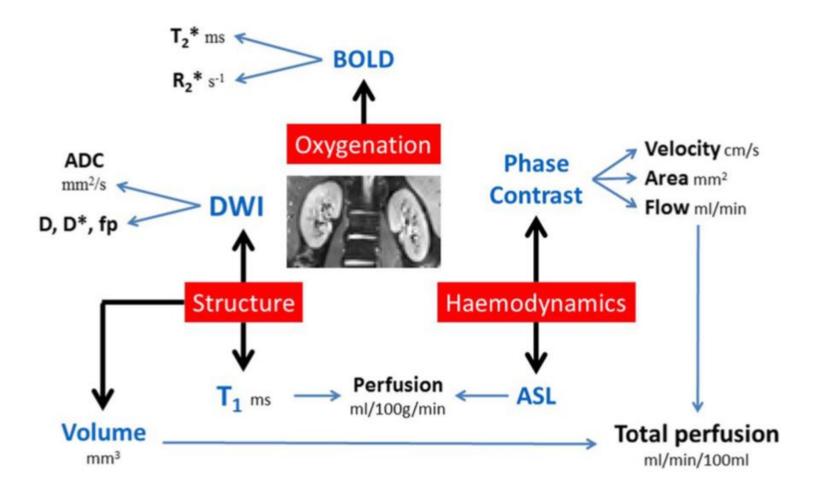

MR elastography

Magnetization transfer imaging

Study AM-01 CKD (over 2 years): evaluating a broad range of renal imaging variables, including sensitivity and repeatability

MRI measurements, CKD stage and correlation with mGFR

	MRI measurement	Units	Healthy Controls	CKD3	CKD4	mGFR correlation (r)	p-value of correlation	coefficient of variation
Hemodynamics	Mean arterial flow	ml/s	9.43 (1.76)	6.39 (1.46)	4.30 (1.28)	0.85	<0.0001	0.07
	RARI	No units	0.68 (0.06)	0.81 (0.06)	0.84 (0.06)	0.76	<0.0001	0.02
	End diastolic velocity	cm/s	17.0 (3.9)	11.3 (3.2)	6.7 (2.5)	0.79	<0.0001	0.12
	Peak systolic velocity	cm/s	54.3 (8.3)	59.8 (14.2)	43.1 (11.1)	0.32	0.02	0.09
	Global perfusion	ml/100g/min	458 (54)	339 (54)	267 (86)	0.78	<0.0001	0.08
Macrostructure	Kidney volume (BSA corrected)	ml	109.0 (12.8)	98.1 (25.6)	86.3 (19.0)	0.42	0.001	0.04
Oxygenation	R2* cortex	S ⁻¹	17.3 (1.4)	17.2 (1.6)	17. 0 (1.2)	0.07	0.59	0.04
	R2* medulla	S ⁻¹	26.0 (2.3)	24.5 (3.7)	22.8 (3.6)	0.35	0.01	0.05
Microstructure	R1 cortex	S ⁻¹	1.17 (0.10)	1.02 (0.07)	0.95 (0.12)	0.70	<0.0001	0.05
	R1 medulla	S ⁻¹	0.77 (0.05)	0.78 (0.04)	0.76 (0.07)	0.08	0.53	0.04
	ADC cortex	mm ² s ⁻¹ x 10 ⁻³	2.52 (0.19)	2.37 (0.17)	2.27 (0.22)	0.48	0.0002	0.06
	ADC medulla	mm ² s ⁻¹ x 10 ⁻³	2.33 (0.18)	2.21 (0.24)	2.17 (0.24)	0.29	0.03	0.05



MRI measurements shows correlation with albuminuria

	MRI measurement	Units	Correlation to UACR		p value of correlation
	Mean arterial flow	ml/s		-0.73	<0.0001
	RARI	No unit		0.67	<0.0001
Hemodynamics	End diastolic velocity	cm/s		-0.73	<0.0001
	Peak systolic velocity	cm/s	-0.29		0.03
	Global perfusion	ml/100g/min		-0.68	<0.0001
Macrostructure	Kidney volume	ml		-0.44	0.0005
Overgonation	R2* cortex	s ⁻¹ -0.06		-0.06	0.67
Oxygenation	R2* medulla	s ⁻¹		-0.32	0.02
	R1 cortex	S ⁻¹		-0.72	<0.0001
	R1 medulla	s ⁻¹		-0.25	0.06
Microstructure	ADC cortex	mm ² s ⁻¹ x 10 ⁻³	· 10 ⁻³ -0.38		0.003
	ADC medulla	mm ² s ⁻¹ x 10 ⁻³		-0.32	0.02

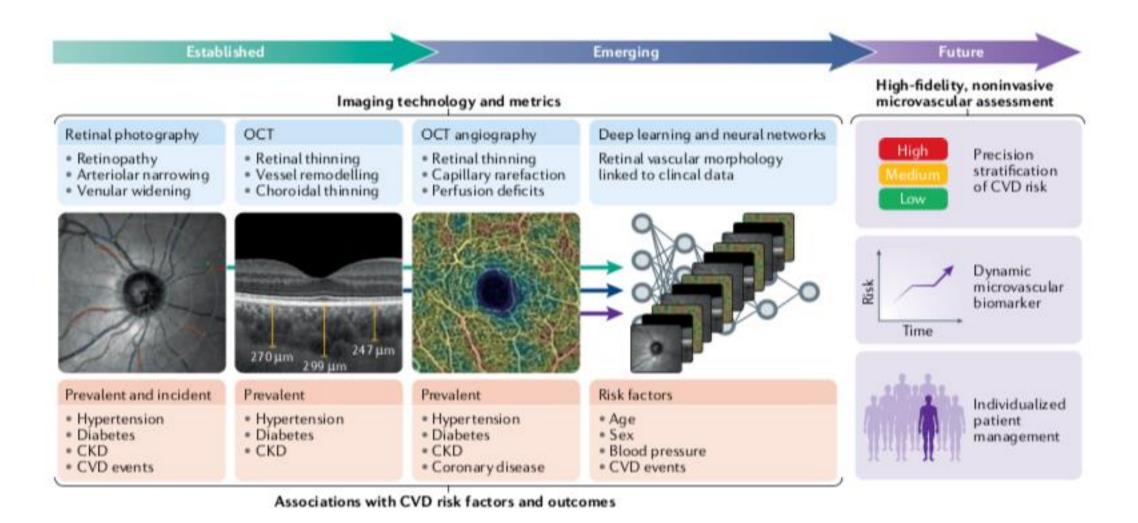
The Future: multiparametric MRI imaging

A need for the equivalent of CVD clinical trial MACE* – a composite end-point of clinical events (or measures) that can show benefit

CKD and prospective observational studies

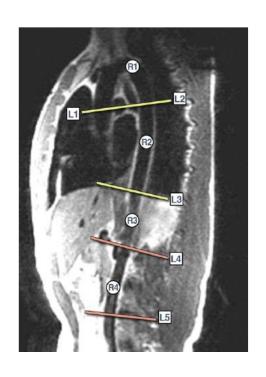
- CKD has few targeted therapies and currently only late disease outcome measures
 - death, dialysis or transplantation
- Need for better validated kidney disease targets
- Need for better validated kidney disease measures of progression and outcome
- Opportunity to re-classify kidney disease

Prospective 4-yr London-based study of 500 DKD (Diabetic Kidney Disease - type 1 and 2) patients aiming to:

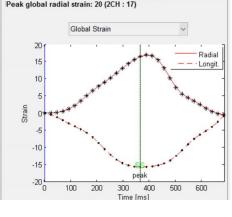

- Recruit patients with biopsy-confirmed DKD risk stratified by proteinuria and eGFR slope
- Apply 'phenomics' (blood, urine and tissue) to identify genetic and other risk factors for progression and complications, including Heart Failure
- Serially record cardiorenal MRI imaging at 0, 1 and 3 years and noninvasive retinal angiography (OCT)
- Patient segment, target identify, and target validate
- (Full recruitment expected by early 2021)

Prospective long-term UK-based study of 3000 'all-cause' CKD patients aiming to:

- Elucidate risk factors for progression and outcomes
- Identify stratification biomarkers (blood, urine and tissue)
- Link to NHS GP/hospital EMRs and UK Renal Registry
- Exploit genetically rich steroid resistant nephrotic syndrome (SRNS) patient subset (ca. 1100)
- Patient segment, target identify, and target validate
- (Full recruitment expected by late 2019)


Precision profiling (stratification): use of retinal imaging


CVD is a significant co-morbidity with eGFR <60 ml/min ('Stage 3')


Potential for a 'game change' in CKD clinical trial design: cardio-renal (multi-morbidity) integration?

Aortic stiffness (Pulse wave velocity)

Diastolic dysfunction (EDV, Strain)

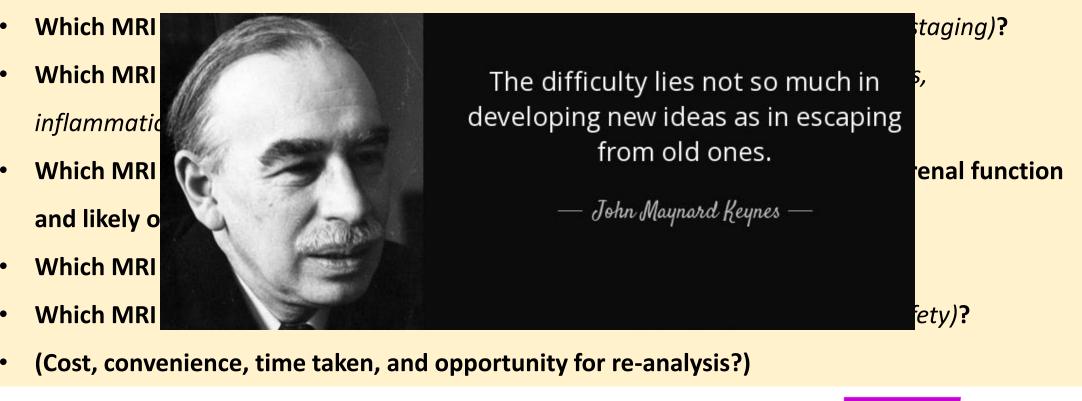
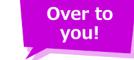

Microvascular function Oxygenation: reactive hyperemia Significant vs placebo 15* (normalised) 10.98

Image No.



Some (of my) questions for inclusion of MRI in future CKD intervention clinical trials

Apart from needing standardized protocols across machines and agreed observer-independent analytical methods:

