

Applications of MRI to renal transplantation - evidence to date

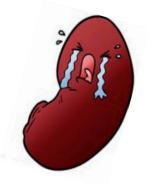
Alexandra Ljimani, MD, BSc

Department of Diagnostic and Interventional Radiology
University Hospital Düsseldorf, Germany
Alexandra.Ljimani@med.uni-duesseldorf.de

Introduction

 Renal transplantation is the therapy of choice for patients with end-stage renal diseases

- Episode of acute allograft dysfunction is reported in approximately 30%—
 40% of patients
- Early detection of allograft dysfunction is mandatory for a good outcome,
 but might be challenging in clinically asymptomatic patients


Introduction

- Standard procedure in case of unclear allograft dysfunction is invasive renal biopsy
- Low risk of biopsy associated major complication (0.4% and 1%), one graft lost in approximately 2,500 biopsies (Schwarz *et al.*, 2005)

• Elevated risk of complications: patients >60 years, low glomerular filtration rate (GFR) (<60 ml/min/1.73 m²), hypertension, acute renal dysfunction (Tøndel *et al.*, 2012)

Possible complications

- Lymphogenic (lymphocele) and urological (urinoma, urin leckage)
- Vascular (ishemia)
- Acute allograft rejection (AAR) (oedema, inflammation) and chronic allograft rejection (CAR) (fibrosis)
- Acute tubular necrosis (ATN)
- Drug induced by ciclosporine, virustatika etc. (fibrosis)


Investigation protocol

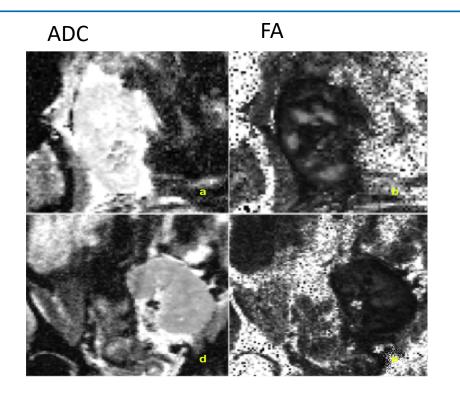
- Anatomical imaging
 - DWI/DTI
 - ASL
 - BOLD
- T1 and T2 mapping
 - Other methods

Anatomic imaging

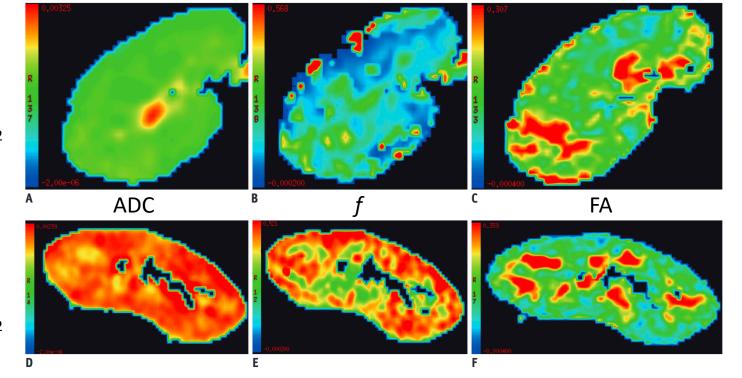
T2 HASTE in three spatial directions for anatomical imaging

Investigation protocol

- Anatomical imaging
 - DWI/DTI
 - ASL
 - BOLD
- T1 and T2 mapping
 - Other methods



- 23 DWI/DTI studies in transplants (August 2017)
- ADC, D, D* in mm²/s
- FA dimensionless
- f in %
- ADC correlates with allograft function (eGFR) and degree of allograft rejection in the biopsy (Kaul et al., 2014)
- f(IVIM) significantly reduced in allografts with acute rejection (Eisenberger et al., 2010)
- **FA** (medulla) correlates with eGFR and is significantly lower in patients, whose allograft function did not recover in comparison to patients with reversible allograft dysfunction (Lanzman *et al.*, 2013)


- DWI parameters might further improve the assessment of the severity of renal allograft dysfunction and help to decide when to perform biopsy
- No differentiation of various underlying pathologies responsible for the impaired renal function
- ⇒ Possible diagnostic value: ATN, AAR, degree of fibrosis (CAR), reversibility of graft dysfunction

Good allograft function eGFR > 60 ml/min/1.73 m²

Poor allograft function eGFR = 15 ml/min/ 1.73 m²

Poor allograft function eGFR = 20 ml/min/ 1.73 m²

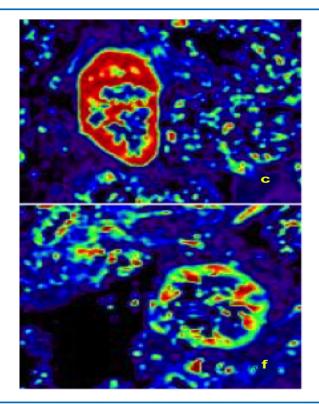
Good allograft function eGFR = 100 ml/min/ 1.73 m²

Investigation protocol

- Anatomical imaging
 - DWI/DTI
 - ASL
 - BOLD
- T1 and T2 mapping
 - Other methods

ASL

- 6 ASL studies in transplants (January 2018)
- Perfusion in ml/100g/min
- ASL perfusion in cortex correlates significantly with eGFR (Heusch et al., 2014)
- ASL perfusion differ between patients with early and delayed graft function after transplantation (Hueper et al., 2015)
- ASL perfusion can be used to determine filtration fraction and could potentially act as a biomarker of renal functional reserve in potential living kidney donors (Cutajar et al., 1988)


ASL

- ASL perfusion correlates with the percentage of affected tubules in kidney biopsies (Hueper et al., 2014)
- **ASL** perfusion in the cortex of affected allografts decrease compared to stable allograft function two years after transplantation (Niles *et al.*, 2016)
- Low SNR
- ⇒ Possible diagnostic value: predicative factor for allograft outcome, CAR and longterm monitoring, renal functional reserve in donors

ASL

Good allograft function eGFR > 60 ml/min/ 1.73 m²

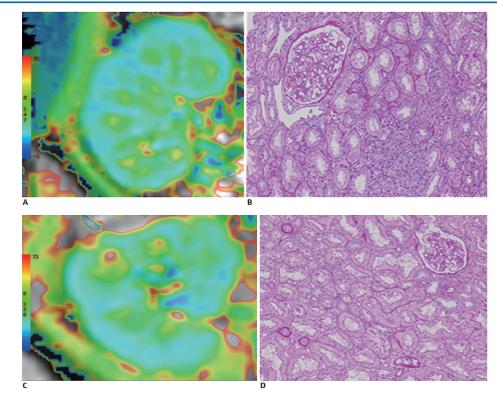
Poor allograft function eGFR = 15 ml/min/ 1.73 m²

Investigation protocol

- Anatomical imaging
 - DWI/DTI
 - ASL
 - BOLD
- T1 and T2 mapping
 - Other methods

BOLD

- 15 BOLD studies in transplants (December 2017)
- R2* in 1/s
- **R2*** in medulla lower during acute rejection compared with normally functioning transplants and transplants with ATN (Sadowski *et al., 2005*)
- **R2*** in cortex higher in ATN compared with acute rejection and with normally functioning transplants (Sadowski *et al., 2005)*
- R2* c/m ratio marker to distinguish between ATN, acute rejection and normally functioning transplants


BOLD

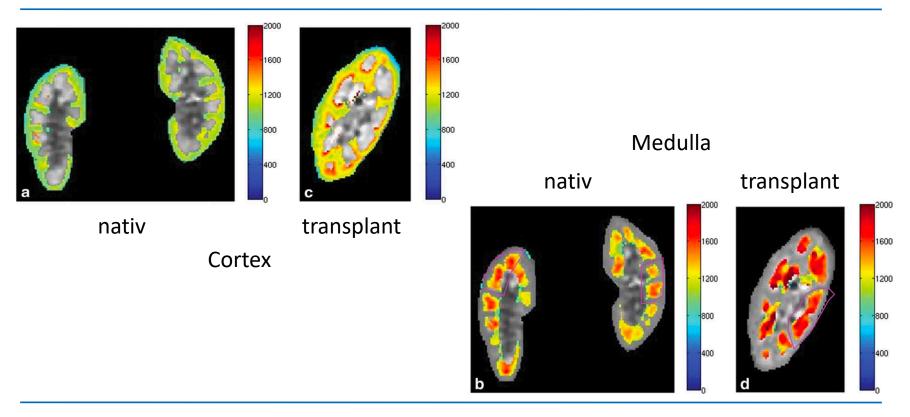
- **R2*** in medulla an important tool for the detection of subclinical chronic allograft damage and long-term monitoring (Niles *et al.*, 2016)
- BOLD MRI cannot distinguish the changes in oxygenation caused by perfusion alterations from those attributed to oxygen consumption alterations
- ⇒ Possible diagnostic value: ATN vs AAR, CAR, long-term monitoring especially of drug therapy

BOLD

Acute rejection

Good allograft function

Investigation protocol


- Anatomical imaging
 - DWI/DTI
 - ASL
 - BOLD
- T1 and T2 mapping
 - Other methods

T1 and T2 mapping

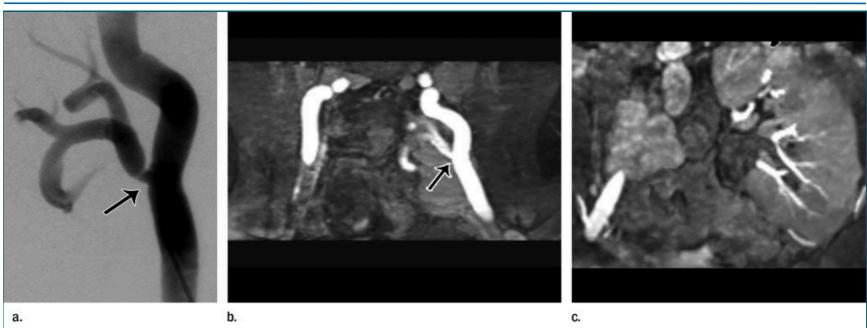
- 3 T1 studies, no T2 studies in transplants (Oktober 2017)
- T1 and T2 in ms
- **T1** in cortex strongly correlate with eGFR (Huang et al., 2011)
- T1 c/m ratio show moderate correlation with renal interstitial fibrosis and eGFR (Friedli et al., 2016)
- Low specificity as fibrosis and oedema both influence T1
- No specificity for different pathologies due to low study number
- ⇒ Possible diagnostic value: interstitial fibrosis, evaluation of transplant function

T1 and T2 mapping

Overview

IMAGING TECHNIQUE	ATN		AAR		CAR	
	С	M	С	M	С	M
DWI/DTI ADC	Ţ	1	1	1	1	1
FA	-	-	\	11	\	11
f	-	1	-	1	-	-
ASL PERFUSION	↓	-	1	1	-	-
BOLD R2*	1	-	-	11	-	1
<u>T1</u>	ratio↓		ratio↓		ratio↓	

Investigation protocol

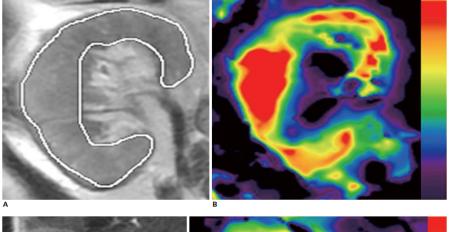

- Anatomical imaging
 - DWI/DTI
 - ASL
 - BOLD
- T1 and T2 mapping
 - Other methods

MRA

- Contrast free techniques TOF-MRA and SSFP
- Very good correlation to digital subtraction angiography (DSA) (Lanzman et al., 2009)
- Often overestimates the degree of RAS of renal allografts
- ⇒ Possible diagnostic value: assessment of vascular abnormalities in renal allografts

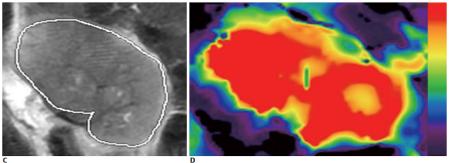
MRA

Figure 4: Images in 31-year-old man (living donor recipient) suspected of having TRAS at US. **(a)** DSA shows relevant TRAS (grade 3, arrow) at anastomosis with external iliac artery. **(b)** Extent of stenosis (arrow) is depicted correctly on coronal MIP reconstructions but signal loss is seen in main transplant artery. **(c)** Note excellent contrast of parenchymal branches on coronal MIP reconstructions.


Lanzman et al., "ECG-gated nonenhanced 3D steady-state free precession MR angiography in assessment of transplant renal arteries: comparison with DSA", Radiology. 2009 Sep;252(3):914-21.

New methods

- Chemical-exchange-saturation-transfer (CEST) shows increased contrast ratios from cortex to medulla in allografts with acute allograft rejection compared with healthy controls (Kentrup et al., 2017)
- ²³Na based MRI shows significant lower ²³Na concentration and corticomedullary sodium gradient in transplanted kidneys in comparison with native kidneys (Moon et al., 2014)
- Quantitative susceptibility mapping (QSM) deliver information on renal tissue microstructure (Xie et al., 2013)
- Quantitative mapping of the longitudinal relaxation time in the rotating frame $(T_1\rho)$ significant correlates with the degree of renal fibrosis (Rappachi *et al.*, 2015)
- Magnetic resonance elastography (MRE) a reliable tool for the assessment of whole kidney stiffness (Kirpalani et al., 2017)


New methods

Poor allograft function eGFR = 15 ml/min/ 1.73 m²

MRE

Good allograft function eGFR = 89 ml/min/ 1.73 m²

Conclusion

IMAGING TECHNIQUE	DIAGNOSTIC VALUE
DWI/DTI	ATN, AAR, degree of fibrosis (CAR), reversibility of graft dysfunction
ASL	Predicative factor for allograft outcome, CAR and long-term monitoring, renal functional reserve in donors
BOLD	ATN vs AAR, CAR, long-term monitoring especially of drug therapy
T1/T2 MAPPING	Interstitial fibrosis, evaluation of transplant function
MRA	Assessment of vascular abnormalities in renal allografts
CEST	Tissue microenvironment
²³ NA-MRI	Corticomedullary sodium gradient
QSM	Local susceptibility, tubulus tracking
Τ ₁ ρ	Fibrosis
MRE	Fibrosis

Conclusion

- All MRI techniques deliver diverse information about the renal allografts
- Multicenter validation of functional MR-techniques is urgently needed (increasing sample size)
- Cut-off values for different pathologies
- More PR for the techniques
- Multiparametric examination protocol will improve the monitoring of renal allografts and detection of different causes of allograft dysfunction (acquisition time about 30 min)

Thank you very much for your attention!

