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Linear models

L1 Basic Ideas

L1.1 Statistical models

One of the tasks of a statistician is the analysis of data. Sta-

tistical analysis usually involves one or more of the following.

1. Summarising data

2. Estimation

3. Inference

4. Prediction

In general, we statistically model the relationship between two

or more random variables by considering models of the form:

Y = f(X,β) + ε,

where,

Y is the response variable,

f is some mathematical function,

X is some matrix of predictor (input) variables,

β are the model parameters,

ε is the random error term.

If we assume that E[ε] = 0, then E[Y ] = f(X,β) if X is

assumed to be non-random. Otherwise E[Y |X] = f(X,β).

Examples

1. We observe the number of cars passing an intersection over

a one minute interval. We want to estimate the average rate

at which cars pass this intersection.
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If X is the number of cars passing the intersection over a one

minute interval, then X is likely to have a Poisson distribution

with mean λ. We want to estimate λ.

2. In economics, the production of an industry, Y , is modelled

to be a function of the amount of labour available, L, and the

capital input, K. In particular, the Cobb-Douglas Production

Function is given to be Y = C0L
αKβ.

Furthermore if α + β = 1, then an industry is said to oper-

ate under constant returns to scale, i.e. if capital and labour

increase by a factor of t, then production also increases by a

factor of t.

As a consultant to an economic researcher, you collect pro-

duction, labour and capital data for a specific industry and

want to estimate the functional relationship and test whether

α + β = 1 in this industry.

Theoretical model: Y = C0L
αKβ.

Stat. model: log Y = C∗ + α logL+ β logK + ε.

Estimate: C∗, α and β.

Test: α + β = 1.

3. Suppose we are interested in studying what factors affect a

person’s blood pressure. Proposed model:

Blood pressure = f(age, weight, gender, activity level, person-

ality type, time of day, genetic predisposition) + ε.

We want to estimate the functional relationship f and poten-

tially test which of the factors has a significant influence on a

person’s blood pressure.
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L1.2 The linear model

Assume

Yi = f(X i,β) + εi = β0 + β1X1i + · · ·+ βpXpi + εi

for all i = 1, . . . , n. A matrix representation of the model is

Y = Zβ + ε, where

Y =


Y1

Y2
...

Yn

 , Z =


1 X11 · · · Xp1

1 X12 · · · Xp2
...

... . . . ...

1 X1n · · · Xpn



β =


β0

β1
...

βp

 , ε =


ε1
ε2
...

εn


Note that Z is called the design matrix and in models with a

constant term includes a column of ones as well as the data

matrix X and possibly functions of X. If no constant or

functions are included in the model, Z and X are equivalent.

A model is considered to be linear if it is linear in its parame-

ters. For example,

1. Yi = β0 + β1X1i + β2X2i + εi is linear.

2. Yi = β0 + β1X1i + β2X
2
2i + εi is linear.

3. Y = C0L
αKβ+ε is linear since we can transform the model

into log Y = C∗ + α logL+ β logK + ε.

4. Y = β1
β1−β2

[
e−β2X − eβ1X

]
+ ε is non-linear.

The assumptions of the linear model are:

1. Model form: Yi = β0 + β1X1i + · · ·+ βpXpi + εi for all i.

2. E[εi] = 0 for all i.

3. Var(εi) = σ2 for all i.

4. Cov(εi, εj) = 0 for all i 6= j.
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L1.3 The Normal (Gaussian) linear model

The Normal linear model assumes:

1. Model form: Yi = β0 + β1X1i + · · ·+ βpXpi + εi for all i.

2. εi ∼ i.i.d.N(0, σ2).

There are two implications of these assumptions:

1. Yi ∼ N(β0+β1X1i+· · ·+βpXpi, σ
2) for all i = 1, . . . , n. In

equivalent matrix form, Y ∼ Nn

(
Zβ, σ2In

)
where Nn is the

n-dimensional multivariate normal distribution. Note that if

two random variables X and Y are normally distributed, then

Cov(X, Y ) = 0 if and only if X and Y are independent.

2. Since Cov(εi, εj) = 0 for all i 6= j, then Cov(Yi, Yj) = 0 for

all i 6= j and Y1, Y2, . . . , Yn are independent.

L1.4 Example

A laboratory tests tyres for tread wear by conducting an exper-

iment where tyres from a particular manufacturer are mounted

on a car. The tyres are rotated from wheel to wheel every 1000

miles, and the groove depth is measured in mils (0.001 inches)

initially and after every 4000 miles giving the following data

(Tamhane and Dunlap, 2000):
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Mileage (1000 miles) Groove Depth (mils)

0 394.33

4 329.50

8 291.00

12 255.17

16 229.33

20 204.83

24 179.00

28 163.83

32 150.33

Firstly we have to determine which is the response variable and

which is the predictor (or controlled) variable. Secondly, we

have to hypothesise a functional relationship between the two

variables, using either theoretical relationships or exploratory

data analysis.

Let the response variable, Y , be groove depth and let the

predictor variable, X, be mileage. A plot of mileage vs. depth:
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Note that as mileage increases, the groove depth decreases.
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Model 1: straight line model

The simple linear regression model:

yi = α + βxi + εi

for i = 1, . . . , n (i.e. E[Y ] = α + βX).

Questions to explore:

1. What are the values of α and β?

2. Is β < 0?

3. What groove depth do we expect if the tyres have travelled

15000 miles?

4. Could another model be more useful in explaining the rela-

tionship between X and Y ?

Definition Let α̂ and β̂ be the estimated values of α and β,

respectively. We call yi the ith observed value and ŷi = α̂+β̂xi
the ith fitted value.

Definition D =
∑n

i=1 (yi − ŷi)2 is called the model deviance.

For the estimated line to fit the data well, one wants an es-

timator of α and β that minimises the model deviance. So,

choose α̂ and β̂ to minimise

D =
n∑
i=1

(yi − ŷi)2 =
n∑
i=1

(yi − α− βxi)2 .

To minimise D,

∂D

∂α
= −2

n∑
i=1

(
yi −

(
α̂ + β̂xi

))
= 0 (1)

∂D

∂β
= −2

n∑
i=1

xi

(
yi −

(
α̂ + β̂xi

))
= 0 (2)
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Equations (1) and (2) are called the normal equations and

solving them we get,

β̂ =

∑n
i=1 (xi − x̄) (yi − ȳ)∑n

i=1 (xi − x̄)2 =
(n− 1)sxy
(n− 1)s2

x

=
sxy
s2
x

,

α̂ = ȳ − β̂x̄.

Note that α̂ and β̂ are called least squares estimators of α and

β. We did not use the normality assumption in our derivation,

so the least squares estimators are invariate to the choice of

distribution for the error terms. (Although the properties of

the estimators may change depending on the underlying dis-

tribution.)

If we include the assumption of normality, then it can be shown

that β̂ =
sxy
s2
x

and α̂ = ȳ − β̂x̄ are also the MLEs of α and β.
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Model 2: horizontal line model

yi = µ+ εi for i = 1, . . . , n. (i.e. E[Y ] = µ)
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To estimate µ by least squares we minimise D =
∑n

i=1(yi −
µ)2. Setting ∂D

∂µ = 0 and solving, we get µ̂ = ȳ and model

deviance, D =
∑n

i=1(yi − ȳ)2.

In this model we assume the predictor variable has no ability

to explain the variance in the response variable.

If D1 is the deviance of the straight line model and D2 is the

deviance of the horizontal line model, then the linear model

does a better job of explaining the variance in Y if D1 ≤ D2.

Hence we say that the linear model “fits” the data better.

Model 3: quadratic model

yi = α + βxi + γx2
i + εi
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To estimate α, β and γ by least squares we minimise D =∑n
i=1

(
yi − (α + βxi + γx2

i )
)2

.

If we let D3 =
∑n

i=1

(
yi − (α̂ + β̂xi + γ̂x2

i )
)2

, then the quadratic

model “fits” the data better than the linear model if D3 ≤ D1.

L1.5 Example

Suppose we are interested in the effect a certain drug has on

the weight of an organ. An experiment is designed in which

rats are randomly assigned to different treatment groups in

which each group receives the drug at one of 7 different levels

(e.g. 0 mg, 100 mg, 200 mg, 300 mg, etc.) Upon completion

of the treatment, the organs are harvested from the rats and

weighed.

Let Yij be the weight of the organ (response variable) of the

jth rat in the ith treatment,

Yij = µi + εij i = 1, . . . , 7 j = 1, . . . , J.

We want to test whether µ1 = µ2 = · · · = µ7.
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The model is linear in the parameters µ1, µ2, . . . , µ7, so we can

estimate using least squares to minimise

D =
7∑
i=1

J∑
j=1

(yij − µi)2.

The least squares estimators are given by:

µ̂i = ȳi. =
1

J

J∑
i=1

yij.
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L2 Least squares estimation

L2.1 Linear algebra review

Definition Let M be any n × m matrix. Then the rank of

M is the maximum number of linearly independent column

vectors of M .

Definition If M = (mij), then MT = (mji) is said to be the

transpose of the matrix M .

Definition Suppose A is a square n× n matrix, then

(a) A is symmetric if and only if AT = A,

(b) A−1 is the inverse of A, if and only if AA−1 = A−1A =

In,

(c) The matrix A is nonsingular if and only if rank(A) = n,

(d) A is orthogonal if and only if A−1 = AT ,

(e) A is idempotent if and only if A2 = AA = A,

(f) A is positive definite if and only if xTAx > 0 for all

non-zero vectors x.

Note that (i) A has an inverse if and only if A is nonsingular,

i.e. the rows and columns are linearly independent; (ii) ATA

is positive definite if A has an inverse.

Computational results

1. Let N be an n × p matrix and P a p × n matrix, then

(NP )T = P TNT .

2. Suppose A and B are two invertible n× n matrices, then

(AB)−1 = B−1A−1.

3. We can write the sum of squares
∑n

i=1 x
2
i = xTx, where

xT = [x1, x2, . . . , xn] is a 1× n vector.
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Calculus of matrices

Given n-dimensional vectors x and y = y(x), we define

dy

dx
=


∂y1
∂x1
· · · ∂yn

∂x1
∂y1
∂x2
· · · ∂yn

∂x2...
...

...
∂y1
∂xn
· · · ∂yn

∂xn

 .

Then,

1. d
dx(Ax) = AT , where A is a matrix of constants.

2. d
dx(xTAx) = (A+AT )x = 2Ax whenever A is symmet-

ric.

3. If f(x) is a function of several variables the necessary

condition to maximise or minimise f(x) is

∂f(x)

∂x
= 0.

If we let H = ∂2f(x)
∂x∂xT be the Hessian of f , i.e. the matrix of

second derivatives, then a maximum will occur ifH is negative

definite, a minimum will occur if H is positive definite.

Expectation and variance of matrices Let A be a matrix

of constants and Y be a random vector, then

(a) E[AY ] = AE[Y ],

(b) Var(AY ) = AVar(Y )AT .
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L2.2 Deriving the least squares estimator

Recall the linear model in matrix form: Y = Zβ + ε, where

Y =


Y1

Y2
...

Yn

 , Z =


1 X11 · · · X(p−1)1

1 X12 · · · X(p−1)2
...

... . . . ...

1 X1n · · · X(p−1)n

 ,

β =


β0

β1
...

βp−1

 , ε =


ε1
ε2
...

εn

 ,
such that,

Y is an n × 1 column vector of observations of the response

variable,

Z is the n×p design matrix whose first column is a column of

1’s, if there is a constant in the model. The other columns are

the observations on the explanatory variables (X1, X2, . . . , Xp−1),

β is a p× 1 column vector of the unknown parameters,

ε is an n× 1 column vector of the random error terms.

Assumptions The general linear regression model assumes,

1. E[ε] = 0,

2. Var(ε) = σ2In.

Aim We want to estimate the unknown vector of parameters,

β, by choosing the value of β which minimises the model

deviance,

D =
n∑
i=1

(yi − (Zβ)i)
2 = (y −Zβ)T (y −Zβ)

= yTy − yTZβ − βTZTy + βTZTZβ

= yTy − 2yTZβ + βTZTZβ

13



Taking the derivative of D with respect to β and noticing that

ZTZ is a symmetric matrix, we get,

∂D

∂β
= (−2yTZ)T + 2ZTZβ

= −2ZTy + 2ZTZβ.

Therefore β̂ will be the least squares estimator of β if−2ZTy+

2ZTZβ̂ = 0. This system of equations are the normal equa-

tions for the general linear regression model.

Now solving for β̂,

2ZTZβ̂ = 2ZTy

ZTZβ̂ = ZTy.

To be able to isolate β̂ it is necessary for ZTZ to be invertible;

therefore we need Z to be of full rank, i.e. rank(Z) = p. If

rank(Z) = p, then

β̂ = (ZTZ)−1ZTy.

For β̂ to minimise D, we need to check the Hessian to see

that it is positive definite. If Z has full rank, then

H =
∂2D

∂β2 = (2ZTZ)T = 2ZTZ,

and ZTZ is positive definite. Hence, β̂ is the least squares

estimator of β.

It can also be shown that

s2 =
1

n− p
(y −Zβ̂)T (y −Zβ̂)

is an unbiased estimator of σ2.
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L2.3 Examples

Example L2.1 Suppose we have two observations such that

y1 = θ + ε y2 = 2θ + ε.

Derive the least squares estimator of θ.

Choose Z =

[
1

2

]
then (ZTZ)−1 = 1

5 and

θ̂ = (ZTZ)−1ZTY =
1

5
(y1 + 2y2).

Example L2.2 Suppose we have our simple regression model,

Y = α + βX + ε, then in matrix terms Y = Zβ + ε where,

Y =


y1

y2
...

yn

 , Z =


1 x1

1 x2
...

...

1 xn

 ,

β =

[
α

β

]
, ε =


ε1
ε2
...

εn

 .
Derive the least squares estimator of β.

Then the least squares estimators of β will be given by,

β̂ = (ZTZ)−1ZTy,
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where,

ZTZ =

[
1 1 · · · 1
x1 x2 · · ·xn

]
1 x1

1 x2
...

...

1 xn


=

[
n

∑n
i=1 xi∑n

i=1 xi
∑n

i=1 x
2
i

]
,

ZTy =

[ ∑n
i=1 yi∑n
i=1 xiyi

]
.

Therefore,

(ZTZ)−1 =
1∑n

i=1(xi − x̄)2

[
1
n

∑
x2
i −x̄

−x̄ 1

]
and so

β̂ = (ZTZ)−1ZTy

=
1∑

(xi − x̄)2

[
1
n

∑
x2
i

∑
yi − x̄

∑
xiyi

−x̄
∑
yi +

∑
xiyi

]

=
1∑

(xi − x̄)2

[
ȳ
∑
x2
i − x̄

∑
xiyi∑

yi(xi − x̄)

]

=
1∑

(xi − x̄)2

[
ȳ
∑

(xi − x̄)2 − x̄
∑

(xi − x̄)(yi − ȳ)∑
(xi − x̄)(yi − ȳ)

]

=

[
ȳ − x̄

∑n
i=1(xi−x̄)(yi−ȳ)∑n

i=1(xi−x̄)2∑n
i=1(xi−x̄)(yi−ȳ)∑n

i=1(xi−x̄)2

]
.

So, [
α̂

β̂

]
=

[
ȳ − β̂x̄

sxy
s2x

]
.

L2.4 Properties of β̂
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1. Unbiasedness

E[β̂] = E[(ZTZ)−1ZTy] = (ZTZ)−1ZTE[y]

= (ZTZ)−1ZTE[Zβ + ε]

= (ZTZ)−1ZT (Zβ + E[ε])

= (ZTZ)−1ZT (Zβ + 0) = Ipβ = β.

2. Variance

Var(β̂) = Var((ZTZ)−1ZTy)

= (ZTZ)−1ZTVar(y)((ZTZ)−1ZT )T

= (ZTZ)−1ZTVar(Zβ + ε)Z(ZTZ)−1

= (ZTZ)−1ZTVar(ε)Z(ZTZ)−1

= (ZTZ)−1ZTσ2InZ(ZTZ)−1

= σ2(ZTZ)−1ZTZ(ZTZ)−1

= σ2(ZTZ)−1.

Note that Var(β̂) is the p × p variance-covariance matrix of

the vector β̂ where the ith diagonal entry is Var(β̂i) and the

i, jth entry is Cov(β̂i, β̂j).

For example, in the simple linear regression case, we had

(ZTZ)−1 =
1∑n

i=1(xi − x̄)2

[
1
n

∑
x2
i −x̄

−x̄ 1

]
.

Therefore,

Var

([
α̂

β̂

])
= σ2(ZTZ)−1

=
σ2∑n

i=1(xi − x̄)2

[
1
n

∑
x2
i −x̄

−x̄ 1

]
,
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and so,

Var(α̂) =
σ2

n

∑n
i=1 x

2
i∑n

i=1(xi − x̄)2
,

Var(β̂) =
σ2∑n

i=1(xi − x̄)2
,

Cov(α̂, β̂) =
−σ2x̄∑n

i=1(xi − x̄)2
.

3. If we assume in addition that ε ∼ Nn(0, σ
2In), then

β̂ ∼ Np(β, σ
2(ZTZ)−1).

This is true since,

β̂ = (ZTZ)−1ZTy = (ZTZ)−1ZT (Zβ + ε)

= (ZTZ)−1ZTZβ + (ZTZ)−1ZTε

= β + (ZTZ)−1ZTε.

Hence β̂ is a linear function of a normally distributed random

variable. Consequently β̂ has a normal distribution with mean

and variance as shown above.

Note that since β̂ ∼ Np(β, σ
2(ZTZ)−1), then each of the

individual parameters

β̂i ∼ N(βi, σ
2((ZTZ)−1)ii),

but the individual β̂i are not independent.

4. Let ŷ = Zβ̂ be the n× 1 vector of fitted values of y.

Note that ŷ = Zβ̂ = Z(ZTZ)−1ZTy. If we let P =

Z(ZTZ)−1ZT , then we can write

ŷ = Py.
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P is therefore often referred to as the hat matrix and is sym-

metric and idempotent because P T = P and P 2 = P .

L2.5 Gauss-Markov Theorem

Theorem If β̂ is the least squares estimator of β, then aT β̂

is the unique linear unbiased estimator of aTβ with minimum

variance.

Proof

1. Suppose β̂ is the LSE of β, then β̂ = (ZTZ)−1ZTy.

Hence,

aT β̂ = aT (ZTZ)−1ZTy = Cy,

where C = aT (ZTZ)−1ZT and aT β̂ is a linear function of

y.

2. aT β̂ is an unbiased estimator of aTβ because,

E[aT β̂] = E[Cy] = CE[Zβ + ε]

= CZβ +CE[ε]

= aT (ZTZ)−1ZTZβ + 0

= aTβ.

3. Suppose there exists another linear unbiased estimator of

aTβ, say bTy, then

E[bTy] = aTβ

and

E[bTy] = bTE[Zβ + ε] = bTZβ.

Therefore, bTZβ = aTβ for all β, so

aT = bTZ.
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4. Consider,

Var(bTy) = bTVar(Zβ + ε)b = bTVar(ε)b

= bTσ2Inb = σ2bTb

and

Var(aT β̂) = Var(Cy) = CVar(Zβ + ε)CT

= CVar(ε)CT = Cσ2InC
T = σ2CCT

= σ2(aT (ZTZ)−1ZT )(aT (ZTZ)−1ZT )T

= σ2aT (ZTZ)−1ZTZ(ZTZ)−1a

= σ2aT (ZTZ)−1a.

But recall from (3) that aT = bTZ, therefore we can rewrite

Var(aT β̂) = σ2bTZ(ZTZ)−1(bTZ)T

= σ2bTZ(ZTZ)−1ZTb

= σ2bTPb.

Comparing Var(bTy) and Var(aT β̂), we get

Var(bTy)− Var(aT β̂) = σ2bTb− σ2bTPb

= σ2bT (In − P )b

= σ2bT (In − P )2b

= σ2bT (In − P )T (In − P )b

= σ2DTD,

where D = (In − P )b. Therefore,

Var(bTy)− Var(aT β̂) = σ2DTD ≥ 0,

so aT β̂ has the smallest variance of any other linear unbiased

estimator.
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5. Suppose that bTy is another linear unbiased estimator such

that Var(bTy) = Var(aT β̂), then Var(bTy) − Var(aT β̂) =

σ2DTD = 0 implies D = 0.

If D = (In − P )b = 0, then

b = Pb = Z(ZTZ)−1ZTb = Z(ZTZ)−1a

and bT = aT (ZTZ)−1ZT , so

bTy = aT (ZTZ)−1ZTy = aT β̂.

Therefore aT β̂ is the unique linear unbiased estimator of aTβ.

Corollary If aT = (0, 0, . . . , 1, 0, . . . , 0) where the 1 is in

the ith position, then β̂i is the best linear unbiased estima-

tor (BLUE) of βi.
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L3 Basic hypothesis tests

L3.1 Tests on a single parameter

Suppose we are given the linear model,

Yi = β0 + β1X1i + β2X2i + · · ·+ βp−1X(p−1)i + εi,

where εi ∼ i.i.d. N(0, σ2).

We want to test H0 : βj = b vs. H1 : βj 6= b at level α where

b is some constant.

The decision rule is to reject H0 if

|T | =

∣∣∣∣∣ β̂j − bSE(β̂j)

∣∣∣∣∣ > tn−p,α/2,

where SE(β̂j) =
√

Var(β̂j) is the standard error of the pa-

rameter. Recall from Sections L2.2 and L2.4 that Var(β̂j) =

s2((ZTZ)−1)jj.

A special case of the above test occurs when we choose b = 0.

The test H0 : βj = 0 vs. H1 : βj 6= 0 at level α has the

decision rule to reject H0 if

|T | =

∣∣∣∣∣ β̂j

SE(β̂j)

∣∣∣∣∣ > tn−p,α/2.

Note that if we reject H0 : βj = 0 we are claiming that the

explanatory variable Xj is useful in predicting the response

variable Y when all the other variables are included in the

model.

The test statistic |T | =
∣∣∣ β̂j

SE(β̂j)

∣∣∣ is often reported in the output

from statistical software such as R.
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Example L3.1 A dataset considers fuel consumption for 50

US states plus Washington DC (n = 51 observations). The

response “fuel” is fuel consumption measured in gallons per

person. The predictors considered are “dlic”, the percentage

of licensed drivers, “tax”, motor fuel tax in US cents per gallon,

“inc”, income per person in $1,000s and “road”, the log of the

number of miles of federal highway. R fits a linear model of

the form,

fuel = β0 + β1dlic + β2tax + β3inc + β4road

and the output was

Estimate Std. Error

Constant 154.193 194.906

dlic 4.719 1.285

tax -4.228 2.030

inc -6.135 2.194

road 26.755 9.337

Test H0 : β2 = 0 vs. H1 : β2 6= 0 at α = 0.05.

The decision rule is to reject H0 if

|T | =

∣∣∣∣∣ β̂2

SE(β̂2)

∣∣∣∣∣ =

∣∣∣∣−4.228

2.030

∣∣∣∣ = |−2.083| > t46,0.025 = 2.013.

So we reject H0 and conclude that the “tax” variable is useful

for prediction of “fuel” after having included the other vari-

ables.

L3.2 Confidence intervals for parameters

Recall that

|T | =

∣∣∣∣∣ β̂j − βjSE(β̂j)

∣∣∣∣∣ ∼ tn−p.
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It follows that a 100(1− α)% confidence interval for βj is

β̂j ± tn−p,α/2SE(β̂j)

where SE(β̂j) = s
√

((ZTZ)−1)jj.

Example L3.2 Consider example L3.1 regarding fuel con-

sumption. Construct a 95% confidence interval for β2.

A 95% confidence interval for β2 is

β̂2 ± t46,0.025SE(β̂j) = −4.228± 2.013× 2.030

= (−8.31,−0.14)

L3.3 Tests for the existence of regression

We want to test H0 : β1 = β2 = · · · = βp−1 = 0 vs. H1 :

βj 6= 0 for some j at level α.

Note that if we reject H0 we are saying that the model β0 +

β1X1i + β2X2i + · · ·+ βp−1X(p−1)i has some ability to explain

the variance that we are observing in Y . (i.e. There exists a

linear relationship between the explanatory variables and the

response variable.)

If D0 is the model deviance under the null hypothesis and D1

is the model deviance under the alternative hypothesis, then

the decision rule is reject H0 if

F =
(D0 −D1)/(p− 1)

D1/(n− p)
> Fp−1,n−p,α.

Example L3.3 For the data in Example L3.1 models

M1 : fuel = β0 + β1dlic + β2tax + β3inc + β4road
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and

M0 : fuel = β0

were fitted with residual sum of squares D1 = 193700 and

D0 = 395694.1, respectively.

Test H0 : β1 = · · · = β4 = 0 vs. H1 : βj 6= 0 for some

j = 1, . . . , 4 at level α = 0.05.

The decision rule is to reject H0 if

F =
(395694.1− 193700)/(5− 1)

193700/(51− 5)
=

50498.525

4210.870
= 11.99 > F4,46,0.05 = 2.574.

Therefore, we reject H0 and can say that the linear model has

some power in explaining the variability in fuel.
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L4 ANOVA tables and F tests

L4.1 The residuals

Consider the linear model y = Zβ + ε. Recall,

1. We assume E[ε] = 0; Var(ε) = σ2In.

2. β̂ = (ZTZ)−1ZTy is the LSE of β.

3. ŷ = Zβ̂ is the n× 1 vector of fitted values.

4. ŷ = Py, where P = Z(ZTZ)−1ZT .

Let r = ε̂ = y− ŷ be the n× 1 vector of residuals. Note that

r = ε̂ = y − ŷ = y −Zβ̂ = y − Py = (In − P )y,

where In − P is also symmetric idempotent and trace (In −
P ) = rank(In − P )y = n− p.

Theorem The vector of fitted values is orthogonal to the vec-

tor of residuals. i.e.

ŷT ε̂ = ε̂T ŷ = 0.

Proof

ŷT ε̂ = (Py)T (In − P )y = yTP T (In − P )y

= yTP Ty − yTP TPy

= yTPy − yTPPy
= yTPy − yTPy = 0,

since P is orthogonal (i.e. P T = P ) and idempotent (i.e.

P 2 = P ).

Therefore, y can be written as a linear combination of orthog-

onal vectors. i.e.

y = ŷ + ε̂.
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The normal linear model assumes ε ∼ N(0, σ2In). We would

expect the sample residuals, ε̂ to exhibit many of the properties

of the error terms.

We can use the following graphical methods of detect model

violations:

1. Scatter plot of residuals vs. each predictor variable.

2. Scatter plot of residuals vs. the fitted values.

3. Normal probability or quantile plot of residuals.

This is an example of a QQ plot for a correctly fitted model:
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These are examples of scatter plots for a correctly fitted model:
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These are examples for a model where the X or Y variable

needs transforming:
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These are examples for a model where the variance is not

constant:
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L4.2 Sums of squares

Let yi be the ith observation, ŷi be the ith fitted value and ȳ

be the mean of the observed values.
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−4

−2

0

2

4

X

Y

Then,

(yi − ȳ) = (yi − ŷi) + (ŷi − ȳ),

(yi − ȳ)2 = [(yi − ŷi) + (ŷi − ȳ)]2

= (yi − ŷi)2 + (ŷi − ȳ)2 + 2(yi − ŷi)(ŷi − ȳ),
n∑
i=1

(yi − ȳ)2 =
n∑
i=1

(yi − ŷi)2 +
n∑
i=1

(ŷi − ȳ)2

+2
n∑
i=1

(yi − ŷi)(ŷi − ȳ).
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Now,

n∑
i=1

(yi − ŷi)(ŷi − ȳ) =
n∑
i=1

(yi − ŷi)ŷi −
n∑
i=1

(yi − ŷi)ȳ

=
n∑
i=1

ε̂iŷi − ȳ
n∑
i=1

ε̂i

= ε̂T ŷ − ȳ
n∑
i=1

ε̂i = 0− 0 = 0.

since ε̂ and ŷ are orthogonal and
∑n

i=1 ε̂i = 0 is one of the

normal equations. Therefore,

n∑
i=1

(yi − ȳ)2 =
n∑
i=1

(yi − ŷi)2 +
n∑
i=1

(ŷi − ȳ)2.

1. We call SStot =
∑n

i=1(yi − ȳ)2 the total sum of squares.

This is proportional to the total variability in y since SStot =

(n− 1)Var(y). It does not depend on the choice of predictor

variables in Z.

2. We call SSres =
∑n

i=1(yi− ŷi)2 the residual sum of squares.

This is a measure of the amount of variability in y the model

was unable to explain. This is equivalent to the deviance of

the model (SSres = D).

3. We call SSreg =
∑n

i=1(ŷi − ȳ)2 the regression sum of

squares. This is the difference between SStot and SSres and

is a measure of the amount of variability in y the model was

able to explain.

From our above derivations, we get

n∑
i=1

(yi − ȳ)2 =
n∑
i=1

(yi − ŷi)2 +
n∑
i=1

(ŷi − ȳ)2

SStot = SSres + SSreg
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Definition The coefficient of determination is

R2 =
SSreg

SStot
.

It measures the proportion of variability explained by the re-

gression.

Notes

1. 0 ≤ R2 ≤ 1.

2. R2 = 1− SSres

SStot
.

3. R2 is often used as a measure of how well the regression

model fits the data: the larger the R2, the better the fit. One

needs to be careful in interpreting how large is large.

Definition The adjusted R2 is

R2
adj = 1− SSres/(n− p)

SStot/(n− 1)
.

It is often used to compare the fit of models with different

numbers of parameters.

Under the null model, Yi = β0 + εi, ȳ = ŷi, so in this special

case, SStot = SSres = D, SSreg = 0 and R2 = R2
adj = 0.

L4.3 Analysis of Variance (ANOVA)

Recall that the F statistic used in the test for the existence of

regression is

F =
(D0 −D1)/(p− 1)

D1/(n− p)
where D1 and D0 are the model deviance or SSres under the

alternative and null hypotheses respectively. We noted above

that D0, the deviance under the null hypothesis, is equivalent

to SStot (under any model).
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1. We call the numerator in the F statistic,

MSreg =
D0 −D1

p− 1
=

SStot− SSres

p− 1
=

SSreg

p− 1

the mean square regression.

2. We call the denominator in the F statistic,

MSres =
D1

n− p
=

SSres

n− p

the mean square residual and it is an unbiased estimator of

σ2. Similarly the residual standard error, RSE =
√

MSres is

an unbiased estimate of σ.

The quantities involved in the calculation of the F statistic are

usually displayed in an ANOVA table:

Source Df Sum Sq Mean Sq F

Regression p− 1 SSreg MSreg =
SSreg

p− 1
F =

MSreg

MSres

Residual n− p SSres MSres =
SSres

n− p
Total n− 1 SStot

Example L4.1 For the data in Example L3.1 the model

fuel = β0 + β1dlic + β2tax + β3inc + β4road

was fitted to the n = 51 observations with residual standard

error, RSE = 64.8912. Summary statistics show Var(fuel) =

7913.88. Complete an ANOVA table and compute R2 for the

fitted model.

1. Note p− 1 = 4, n− p = 46 and n− 1 = 50.

2. SStot = (n− 1)Var(fuel) = 50× 7913.88 = 395694.

3. MSres = RSE2 = 64.89122 = 4210.87.

4. SSres = (n− p)MSres = 46× 4210.87 = 193700.
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5. SSreg = SStot− SSres = 395694− 193700 = 201994.

6. MSreg = SSreg/(p− 1) = 201994/4 = 50498.50.

7. F = MSreg/MSres = 50498.5/4210.87 = 11.99.

Hence the completed ANOVA table is

Source Df Sum Sq Mean Sq F

Regression 4 201994 50498.50 11.99

Residual 46 193700 4210.87

Total 50 395694

Finally, R2 =
SSreg

SStot
=

201994

395694
= 0.5105.

L4.4 Comparing models

Consider two models, M1 and M2, where M2 is a simplification

of M1. For example,

M1 : Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ε,

M2 : Y = β0 + β2X2 + β4X4 + ε.

The residual sum of squares from model M1 will always be less

then M2, but we can test

H0 : β1 = β3 = 0 vs. H1 : β1 6= 0, β3 6= 0

at level α to test if removing these terms significantly increases

the residual sum of squares.

Let D1 =
∑n

i=1(yi− ŷi)2 be the model deviance (or SSres) for

model M1.

Let D2 =
∑n

i=1(yi− ŷi)2 be the model deviance (or SSres) for

model M2.
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The decision rule is to reject H0 if

F =
(D2 −D1)/q

D1/(n− p)
> Fq,n−p,α,

where n is the number of observations,

p is the number of parameters in M1 and

q is the number of parameters fixed to reduce M1 to M2.

For the example above, p = 5 and q = 2.

Example L4.2 Let model 1 be

fuel = β0 + β1dlic + β2tax + β3inc + β4road

and let model 2 be

fuel = β0 + β1dlic + β3inc

For the fuel data in Example L3.1, the residual sum of squares

was 193700 for model 1 and 249264 for model 2. Test which

model fits the data better.

Equivalently, we test:

H0 : β2 = β4 = 0 vs. H1 : β2 6= 0, β4 6= 0

at α = 0.05. The decision rule is to reject H0 if

F =
(D2 −D1)/q

D1/(n− p)
> Fq,n−p,α = F2,46,0.05 = 3.20.

Substituting in the data gives,

F =
(249264− 193700)/2

193700/(51− 5)
= 18.47.

Consequently, we will reject H0. Model 1 fits the data better

at α = 0.05.
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Let’s consider the more general case where the basic model

M1 is

Y = β0 + β1X1 + β2X2 + · · ·+ βp−1Xp−1 + ε.

We denote

SSreg(M1) =
n∑
i=1

(ŷi − ȳ)2 = R(β1, β2, . . . , βp−1|β0),

assuming there is a constant in the model.

Goal We want to build a regression model which “best” de-

scribes the response variable. Hence we would like to explain

as much of the variance in Y as possible, yet keep the model as

simple as possible (Principle of Parsimony). Consequently we

want to determine which explanatory variables are worthwhile

to include in the final model.

Idea Explanatory variables should be included in the model if

the extra portion of the regression sum of squares (called the

extra sum of squares) which arises from their inclusion in the

model is relatively large compared to the unexplained variance

in the model (residual sum of squares).

Consider a second model M2 which is a simplification of M1,

i.e.,

Y = β0 + β1X1 + β2X2 + · · ·+ βk−1Xk−1 + ε,

where k < p. Then

SSreg(M2) = R(β1, β2, . . . , βk−1|β0).

Definition The extra sum of squares due to the inclusion of

the terms βkXk + · · ·+ βp−1Xp−1 in the model is

SSreg(M1)− SSreg(M2).
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It is denoted

R(βk, . . . , βp−1|β0, β1, . . . , βk−1) =

R(β1, β2, . . . , βp−1|β0)−R(β1, β2, . . . , βk−1|β0).

The extra sum of squares has q = p − k degrees of freedom

where q is the number of parameters on the left of the bar, i.e.

number of explanatory variables added to the reduced model

to make the full model.

We can test

H0 : Reduced model, M2, best describes the data

H1 : Full model, M1, best describes the data

The decision rule is to reject H0 if

F =
R(βk, . . . , βp−1|β0, . . . , βk−1)/q

SSres(M1)/(n− p)
> Fq,n−p,α.

Rejecting H0 implies the full model describes the data better,

so we should include the variables Xk, . . . , Xp−1 (jointly) in

our model.

The test for the existence of regression is a special case of

this type of test, where H0 : β1 = β2 = · · · = βp = 0 (i.e.

the reduced model is Y = β0 + ε). Note that SSreg(M1) =

R(β1, β2, . . . , βp−1|β0) is the extra sum of squares in this case.

L4.5 Sequential sum of squares

Definition The sequential sum of squares for each j is

R(βj|β0, β1, . . . , βj−1) = R(β1, β2, . . . , βj|β0)−R(β1, β2, . . . , βj−1|β0)

and is the extra sum of squares that one incurs by adding the

explanatory variable Xj to the model given that X1, . . . , Xj−1

are already present.
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The sequential sum of squares is often given in addition to the

basic ANOVA table.

Source Df Sum Sq Mean Sq F

X1 df1 SSseq1 MSseq1 = SSseq1
df1

F = MSseq1
MSres

X2 df2 SSseq2 MSseq2 = SSseq2
df2

F = MSseq2
MSres

...
...

...
...

...

Xp−1 dfp−1 SSseqp−1 MSseqp−1 =
SSseqp−1

dfp−1
F =

MSseqp−1

MSres

Residuals n− p SSres MSres = SSres
n−p

Note that given the sequential sum of squares, one can calcu-

late

R(βj, βj+1, . . . , βk|β0, β1, . . . , βj−1) =
k∑
i=j

SSseqi.

However, one cannot calculate the nonsequential sums of squares

in this manner, for example, R(β1, β3, β5|β0, β2, β4).

Example L4.3 The output from R for the fuel data in Example

L3.1 is:

Source df Sum Sq Mean Sq

dlic 1 86854 86854

tax 1 19159 19159

inc 1 61408 61408

road 1 34573 34573

Residuals 46 193700 4211

Test:

H0 : Y = β0 + β1dlic + β2tax + ε

H1 : Y = β0 + β1dlic + β2tax + β3inc + β4road + ε

The decision rule is to reject H0 if

F =
R(β3, β4|β0, β1, β2)/2

SSres/(n− p)
> F2,n−p,0.05
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where

R(β3, β4|β0, β1, β2) = R(β3|β0, β1, β2) +R(β4|β0, β1, β2, β3)

= 61408 + 34573 = 95981.

Hence,

F =
95981/2

4211
= 11.40 > F2,46,0.05 = 3.20.

Therefore we will reject H0 at α = 0.05. Including the vari-

ables “inc” and “road” significantly improves the model. An

approximate p value is p = P (F2,46 > 11.40) < 0.001.

Note that

SSreg = R(β1|β0)+R(β2|β0, β1)+R(β3|β0, β1, β2)+R(β4|β0, β1, β2, β3).

Definition The partial sum of squares for each j is

R(βj|β0, β1, . . . , βj−1, βj+1, . . . , βp−1)

= R(β1, β2, . . . , βp−1|β0)−R(β1, . . . , βj−1, βj+1, . . . , βp−1|β0)

and is the extra sum of squares that one incurs by adding the

explanatory variable Xj to the model given that X1, . . . , Xj−1, Xj+1, . . . , Xp−1

are already present.

Note that the F test for testing

H0 : βj = 0 vs. H1 : βj 6= 0

at level α, is equivalent to the t test for the individual param-

eter since t2n−p = F1,n−p
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