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Probability

P1 Probability, random variables and
expectation

P1.1 Sample spaces and events

Definition The sample space Ω for a random experiment is

the set of all possible outcomes of the random experiment.

Definition An event relating to an experiment is a subset of

Ω.

Example P1.1 The sample space for the toss of two fair coins

is

Ω = {HH,HT, TH, TT}.
Let event A be obtaining at least one head, then

A = {HH,HT, TH}.

Example P1.2 The sample space of an individual’s weight

change under a diet and exercise regime is

Ω = {w : −∞ < w <∞}.
Let event L be the individual loses at least 10 kgs, then

L = {w : w ≤ −10}.

Note that Ω may be discrete (finite or countable) or continu-

ous.

P1.2 Probability

Possible interpretations of probability:

1. Classical interpretation. Assuming that all outcomes of an
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experiment are equally likely, then the probability of an event

A = n(A)
n(Ω) , where n(A) is the number of outcomes satisfying

A and n(Ω) is the number of outcomes in Ω.

2. Frequency interpretation. The probability of an event is the

relative frequency of observing a particular outcome when an

experiment is repeated a large number of times under similar

circumstances.

3. Subjective interpretation. The probability of an event is

an individual’s perception as to the likelihood of an event’s

occurrence.

Definition A probability (measure) is a real-valued set func-

tion P defined on the events (subsets) of a sample space Ω

satisfying the following three axioms (see Kolmogorov, 1933):

A1. P (E) ≥ 0 for any event E;

A2. P (Ω) = 1;

A3. If E1, E2, . . . is any infinite sequence of disjoint events

(i.e. Ei ∩ Ej = ∅ for all i 6= j, then

P

( ∞⋃
i=1

Ei

)
=

∞∑
i=1

P (Ei).

Note that all of the other properties of probability (measures)

that we use are derived from these three axioms.

Exercise Using only the axioms above, prove:

1. 0 ≤ P (E) ≤ 1 for any event E.

2. P (EC) = 1− P (E) where EC is the complement of E.

3. P (∅) = 0.

4. P (A ∪B) = P (A) + P (B)− P (A ∩B).
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P1.3 Conditional probability

Definition The conditional probability of an event E given an

event F is

P (E | F ) =
P (E ∩ F )

P (F )
, provided P (F ) > 0.

Note if P (F ) > 0, then P (E ∩ F ) = P (E|F )P (F ).

Example P1.3 Consider the experiment of tossing a fair 6-

sided die. What is the probability of observing a 2 if the out-

come was even?

Let event T be observing a 2 and let event E be the outcome

is even. Find P (T |E).

P (T |E) =
P (T ∩ E)

P (E)
=

1/6

1/2
=

1

3
.

Total probability theorem Let E1, E2, . . . be a partition of

Ω (i.e. Ei ∩ Ej = ∅ for all i 6= j and
∞⋃
i=1

Ei = Ω) and let

F ⊆ Ω be any event. Then,

P (F ) =
∞∑
i=1

P (F | Ei)P (Ei).

Example P1.4 Suppose a factory uses three different ma-

chines to produce tin cans. Machine I produces 50% of all

cans, machine II produces 30% of all cans and machine III

produces the rest of the cans. It is known that 4% of cans

produced on machine I are defective, 2% of the cans produced

on machine II are defective and 5% of the cans produced on

machine III are defective. If a can is selected at random, what

is the probability that it is defective?
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Let event Mi be the can is produced by machine i, i = 1, 2, 3.

Let D be the event that the can is defective.

P (M1) = 0.5 P (D|M1) = 0.04

P (M2) = 0.3 P (D|M2) = 0.02

P (M3) = 0.2 P (D|M3) = 0.05

P (D) =
3∑
i=1

P (D|Mi)P (Mi)

= (0.04× 0.5) + (0.02× 0.3) + (0.05× 0.2) = 0.036.

Bayes’ Formula Let E1, E2, . . . , En be the partition of Ω (i.e.

Ei∩Ej = ∅ for all i 6= j and
n⋃
i=1

Ei = Ω) such that P (Ei) > 0

for all i = 1, . . . , n, and let F ⊆ Ω be any event such that

P (F ) > 0. Then

P (Ek|F ) =
P (F |Ek)P (Ek)∑n
i=1 P (F |Ei)P (Ei)

.

Proof: If P (F ) > 0 and P (Ek) > 0, then by definition

P (Ek|F ) =
P (Ek ∩ F )

P (F )
=
P (F |Ek)P (Ek)

P (F )
.

Since E1, E2, . . . , En is a partition of Ω such that P (Ei) > 0

for all i, then by the total probability theorem we can rewrite

P (F ) and obtain

P (Ek|F ) =
P (F |Ek)P (Ek)∑n
i=1 P (F |Ei)P (Ei)

.

Example P1.5 Consider example P1.4. Suppose now that we

randomly select a can and find that it is defective. What is

the probability that it was produced by machine I?
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P (M1|D) =
P (D|M1)P (M1)

P (D)
=

0.04× 0.5

0.036
= 0.55.

P1.4 Independence

Definition Events E1, E2, . . . , EN are said to be independent

if, for any finite subset {i1, i2, . . . , in} ⊆ {1, . . . , N},

P

(
n⋂
j=1

Eij

)
=

n∏
j=1

P (Eij).

Note, in particular, two events E and F are independent if

P (E ∩ F ) = P (E)P (F )

Theorem If P (F ) > 0, two events, E and F , are independent

if and only if P (E|F ) = P (E).

Proof:

P (E|F ) = P (E)

P (E ∩ F )

P (F )
= P (E)

P (E ∩ F ) = P (E)P (F ).

P1.5 Random variables

Definition A random variable (r.v.) X is a function of out-

come or a mapping from Ω to R: X : Ω −→ R.

For example,

(a) Let X be the number of heads observed when tossing a

fair coin three times.
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(b) Let T be the length of time you wait to be serviced by a

bank teller.

Note: Random variables can be either discrete (i.e. take a

finite or countable number of values), continuous, or mixed.

Definition The (cumulative) distribution function (c.d.f.) is

defined by

FX(x) = P (X ≤ x) = P ({ω ∈ Ω : X(ω) ≤ x}).

Properties of the c.d.f:

1. P (X > x) = 1− FX(x).

2. P (x1 < X ≤ x2) = FX(x2)− FX(x1).

Note the c.d.f. is defined for all random variables regardless of

whether they are discrete, continuous or mixed.

Definition If X is a discrete random variable, then we can

define a function pX(x), called the probability mass function

(p.m.f.) such that

pX(xi) = P (X = xi) = P ({ω : X(ω) = xi}).

Example P1.6 Let X be the number of heads observed when

tossing a fair coin three times. What is the p.m.f. of X?

pX(x) =



1/8 if x = 0

3/8 if x = 1

3/8 if x = 2

1/8 if x = 3

0 otherwise.
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Definition Let X be a continuous random variable. If there

exists some nonnegative function fX on R such that for any

interval I,

P (X ∈ I) =

∫
I

fX(u)du,

the function fX is called the probability density function (p.d.f.)

of X.

Note that if FX(x) is the c.d.f. of a continuous random vari-

able X, then the p.d.f. of X is given by

fX(x) =
dFX(x)

dx
.

Note that

FX(x) = P (X ≤ x) =

{ ∑
xi≤x pX(xi) if X is discrete,∫ x
−∞ fX(u)du if X is continuous.

P1.6 Expectation

Definition The expectation of a random variable X is defined

by

E[X] =

{ ∑
xi
xipX(xi) if X is discrete,∫∞

−∞ xfX(x)dx if X is continuous.

Note that E[X] only exists if E[|X|] < ∞ and that E[X] is

a measure of the “centre” of the distribution (i.e. “the centre

of mass”).

Definition If Y = g(X) then the expectation of Y is given by

E[Y ] = E[g(X)]

=

{ ∑
xi
g(xi)pX(xi) if X is discrete,∫∞

−∞ g(x)fX(x)dx if X is continuous.
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Properties of expectation For given constants c, ci and d,

1. E[c] = c;

2. E[cg(X) + d] = cE[g(X)] + d;

3. E [
∑n

i=1 cigi(X)] =
∑n

i=1 ciE[gi(X)].

Definition The variance of X is

Var(X) = E
[
(X − E[X])2

]
.

The standard deviation of X is
√

Var(X).

Properties of variance

1. Var(X) = E[X2]− (E[X])2;

2. Var(X) ≥ 0;

3. Var(cX + d) = c2Var(X);

4. If X1, . . . , Xn are independent and c1, . . . , cn are any given

constants, then

Var

(
n∑
i=1

ciXi

)
=

n∑
i=1

c2
iVar(Xi).

See the supplementary sheet for specific examples of discrete

and continuous distributions and some of their specific char-

acteristics.
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P2 Joint distribution functions

P2.1 Joint c.d.f. and p.d.f.

Definition The joint (cumulative) probability distribution func-

tion (joint c.d.f.) of X and Y is defined by

FX,Y (x, y) = P ({ω : X(ω) ≤ x and Y (ω) ≤ y})
= P (X ≤ x, Y ≤ y), x, y ∈ R.

Definition Two r.v.’s X and Y are said to be jointly contin-

uous, if there exists a function fX,Y (x, y) ≥ 0 such that for

every ‘nice’ set C ⊆ R2,

P ((X, Y ) ∈ C) =

∫ ∫
C

fX,Y (x, y)dxdy.

The function fX,Y is called the joint probability density func-

tion (joint p.d.f.) of X and Y .

If X and Y are jointly continuous, then

FX,Y (x, y) = P (X ≤ x, Y ≤ y)

=

∫ y

−∞

∫ x

−∞
fX,Y (u, v)dudv.

Hence,

fX,Y (x, y) =
∂2FX,Y (x, y)

∂x∂y
.

Example P2.1 Suppose that

fX,Y (x, y) =

{
24x(1− x− y) x ≥ 0, y ≥ 0, x+ y ≤ 1,

0 otherwise.

(i) Find P (X > Y ), (ii) Find P (X > 1
2).

(i) Let C = {(x, y) : x > y} and write A = {(x, y) :

fX,Y (x, y) > 0}. Then,

C ∩ A = {(x, y);x > 0, y > 0, x+ y < 1, x > y}.
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y

x

= 1

x = y

x + y

U

AC

P (X > Y ) = P ((X, Y ) ∈ C)

=

∫ ∫
C

fX,Y (x, y)dxdy

=

∫ ∫
C∩A

24x(1− x− y)dxdy

=

∫ 1/2

0

∫ 1−y

y

24x(1− x− y)dxdy

=

∫ 1/2

0

[
12x2 − 8x3 − 12yx2

]1−y
y

dy

...

=

∫ 1/2

0

4− 12y + 16y3dy

=
[
4y − 6y2 + 4y4

]1/2
0

= 2− 3

2
+

1

4
=

3

4
.

(ii) Let D = {(x, y) : x > 1/2}, then

D ∩ A = {(x, y);x > 1/2, y > 0, x+ y < 1}.
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P (X > 1/2) = P ((X, Y ) ∈ D)

=

∫ ∫
D

fX,Y (x, y)dxdy

=

∫ ∫
D∩A

24x(1− x− y)dxdy

=

∫ 1

1/2

∫ 1−x

0

24x(1− x− y)dydx

=

∫ 1

1/2

[
24xy

(
1− x− 1

2
y

)]1−x

0

dx

=

∫ 1

1/2

12x(1− x)2dx

=

[
12

2
x2 − 24

3
x3 +

12

4
x4

]1

1/2

= 6− 8 + 3− 3

2
+ 1− 3

16
=

5

16
.

P2.2 Marginal c.d.f. and p.d.f.

Definition Suppose that the c.d.f. of X and Y is given by

FX,Y , then the c.d.f. of X can be obtained from FX,Y since

FX(x) = P (X ≤ x) = P (X ≤ x, Y <∞)

= lim
y→∞

FX,Y (x, y)

FX is called the marginal distribution (marginal c.d.f.) of X.

Definition If fX,Y is the joint p.d.f. of X and Y , then the

marginal probability density function (marginal p.d.f.) of X is

given by

fX(x) =

∫ ∞
−∞

fX,Y (x, y)dy.

Example P2.2 Consider example P2.1. Find the marginal

p.d.f. and c.d.f of Y.

11



fY (y) =

∫ ∞
−∞

fX,Y (x, y)dx

=

{ ∫ 1−y
0 24x(1− x− y)dx 0 ≤ y ≤ 1,

0 otherwise

=

{
4(1− y)3 0 ≤ y ≤ 1,

0 otherwise.

Hence,

FY (y) =


0 y < 0,∫ y

0 4(1− u)3du = 1− (1− y)4 0 ≤ y ≤ 1,

1 y > 1.

Example P2.3 Suppose that

fX,Y (x, y) =

{
e−(x+y) 0 < x, y <∞,
0 otherwise,

and let Z = X/Y . Find the p.d.f. of Z.

Clearly, Z > 0. For z > 0,

FZ(z) = P (Z ≤ z) = P (X/Y ≤ z)

=

∫ ∫
{(x,y):x/y≤z}

fX,Y (x, y)dxdy

=

∫ ∞
0

∫ yz

0

e−(x+y)dxdy

=

∫ ∞
0

−e−y(1+z) + e−ydy

= 1− 1

1 + z

and so

fZ(z) =
dFZ(z)

dz
=

{
1

(1+z)2 z > 0

0 z ≤ 0.
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Note that we can extend the notion of joint and marginal

distributions to random variables X1, X2, . . . , Xn in a similar

fashion.

P2.3 Independent random variables

Definition Random variables X and Y are said to be inde-

pendent if, for all x, y ∈ R,

P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y),

i.e., for all x, y ∈ R, FX,Y (x, y) = FX(x)FY (y).

If X and Y are discrete random variables with joint p.m.f.

pX,Y (x, y) and marginal p.m.f.’s pX(x) and pY (y), respec-

tively, then X and Y are independent if and only if for all

x, y ∈ R,

pX,Y (x, y) = pX(x)pY (y).

If X and Y are continuous random variables with joint p.d.f.

fX,Y (x, y) and marginal p.d.f.’s fX(x) and fY (y), respectively,

then X and Y are independent if and only if for all x, y ∈ R,

fX,Y (x, y) = fX(x)fY (y).

Note that we can extend the notion of independent random

variables to random variables X1, X2, . . . , Xn

Definition The random variables X1, X2, . . . , Xn are said to

independent and identically distributed (i.i.d.) if,

1. X1, X2, . . . , Xn are independent.

2. X1, X2, . . . , Xn all come from the same distribution func-

tion (i.e. Xi ∼ F for all i = 1, . . . , n).
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Definition The random variables X1, X2, . . . , Xn are said to

be a random sample if they are i.i.d.

Example P2.4 Suppose X1, X2, . . . , Xn are a random sample

from the Poisson distribution with mean λ. Find the joint

p.m.f. of X1, X2, . . . , Xn.

If Xi ∼ Poi(λ), then its p.m.f. is given by

pXi
(xi) =

{
e−λλxi
xi!

if xi = 0, 1, 2, . . .

0 otherwise.

Since X1, X2, . . . , Xn are independent, their joint p.m.f. is

given by,

pX1,X2,...,Xn
(x1, x2, . . . , xn) =

n∏
i=1

pXi
(xi)

=

{ ∏n
i=1

e−λλxi
xi!

if xi = 0, 1, 2, . . .

0 otherwise.

=

{
e−nλλ

∑n
i=1 xi∏n

i=1 xi!
if xi = 0, 1, 2, . . .

0 otherwise.
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P3 Conditional distribution and conditional ex-
pectation

P3.1 Conditional distribution

Recall that for any two events E and F such that P (F ) > 0,

we defined in Section P1.3 that

P (E|F ) =
P (E ∩ F )

P (F )
.

Can we extend this idea to random variables?

Definition If X and Y are discrete random variables, the con-

ditional probability mass function of X given Y = y is

pX|Y (x|y) = P (X = x|Y = y)

=

{
pX,Y (x,y)
pY (y) if pY (y) > 0

0 otherwise,

where pX,Y (x, y) is the joint p.m.f. of X and Y and pY (y) is

the marginal p.m.f. of Y for any x and y such that pY (y) > 0.

Note that

1. P (X = x|Y = y) =
pX,Y (x,y)
pY (y) ≥ 0

2. ∑
x

P (X = x|Y = y) =
∑
x

pX,Y (x, y)

pY (y)

=
1

pY (y)

∑
x

pX,Y (x, y)

=
1

pY (y)
pY (y) = 1.

This implies that P (X = x|Y = y) is itself a p.m.f.

Definition If X and Y are discrete random variables, the

conditional (cumulative) probability distribution function of X
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given Y = y is

FX|Y (x|y) = P (X ≤ x|Y = y) =
∑
x′≤x

pX|Y (x′|y).

Example P3.1 Suppose the joint p.m.f. of X and Y is given

by the following probability table.

Y

0 1 2 3

0 0 1/42 2/42 3/42

X 1 2/42 3/42 4/42 5/42

2 4/42 5/42 6/42 7/42

Determine the conditional p.m.f. of Y given X = 1.

PY |X(y|x = 1) =
pX,Y (x = 1, y)

pX(x = 1)
=
pX,Y (x = 1, y)

14/42

The conditional p.m.f. of Y given X = 1 is therefore

PY |X(y|x = 1) =


2/42
14/42 = 2

14 if y = 0,
3/42
14/42 = 3

14 if y = 1,
4/42
14/42 = 4

14 if y = 2,
5/42
14/42 = 5

14 if y = 3.

We cannot extend this idea to the continuous case directly

since PY (Y = y) = 0.

Definition If X and Y have a joint p.d.f. fX,Y , then the

conditional probability density function of X, given that Y =

y, is defined by

fX|Y (x|y) =

{
fX,Y (x,y)
fY (y) if fY (y) > 0,

0 otherwise.
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Definition Furthermore, we can define the conditional (cu-

mulative) probability distribution function of X, given Y = y,

as

FX|Y (x|y) = P (X ≤ x|Y = y) =

∫ x

−∞
fX|Y (u|y)du.

Example P3.2 Suppose the joint p.d.f. of X and Y is given

by

fX,Y (x, y) =

{
24x(1− x− y) x ≥ 0, y ≥ 0, x+ y ≤ 1,

0 otherwise.

Find (a) the conditional p.d.f. of X given Y = y and (b) the

conditional p.d.f. of X given Y = 1
2 .

(a) In example P2.2 we found

fY (y) =

{
4(1− y)3 0 ≤ y ≤ 1,

0 otherwise.

Therefore,

fX|Y (x|y) =
fX,Y (x, y)

fY (y)

=

{
24x(1−x−y)

4(1−y)3 x ≥ 0, y ≥ 0, x+ y ≤ 1,

0 otherwise.

(b)

fX|Y

(
x|1

2

)
=

fX,Y (x, 1
2)

fY (1
2)

=

{
24x(1/2−x)

4(1/2)3 = 48x(1
2 − x) 0 ≤ x ≤ 1

2

0 otherwise.

Note that conditional pdf’s are themselves pdf’s and have all

the properties associated with pdf’s.
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P3.2 Conditional expectation

Definition The conditional expectation of X, given Y = y, is

defined by

E[X|Y = y] =

{ ∑
x xpX|Y (x|y) if X is discrete,∫∞
−∞ xfX|Y (x|y)dx if X is continuous.

Since fX|Y (x|y) =
fX,Y (x,y)
fY (y) , then fX,Y (x, y) = fX|Y (x|y)fY (y).

Consequently, we can reconstruct the joint p.d.f. (p.m.f.) if

either

(a) we are given the conditional p.d.f. (p.m.f.) of X given

Y = y and the marginal p.d.f. (p.m.f.) of Y , or

(b) we are given the conditional p.d.f. (p.m.f.) of Y given

X = x and the marginal p.d.f. (p.m.f.) of X.

Example P3.3 Suppose that the joint p.d.f. of X and Y is

given by

fX,Y (x, y) =

{
e−(xy+y)y−1 0 < x, y <∞,
0 otherwise.

For y > 0, find P (X > 1|Y = y) and E[X|Y = y].

For y > 0,

fY (y) =

∫ ∞
−∞

fX,Y (x, y)dx =

∫ ∞
0

e−(xy+y)y−1dx = e−y

Hence, for y > 0,

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
=

{
e−x/yy−1 x > 0,

0 x ≤ 0.
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Thus,

P (X > 1|Y = y) =

∫ ∞
1

fX|Y (x|y)dx

=

∫ ∞
1

e−x/yy−1dx = e−1/y,

and

E[X|Y = y] =

∫ ∞
−∞

xfX|Y (x|y)dx =

∫ ∞
0

x

y
e−x/ydx = y.

P3.3 Independent random variables

See section P2.3. If X and Y are independent continuous

random variables, then for any y s.t. fY (y) > 0

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
=
fX(x)fY (y)

fY (y)
= fX(x)

∀x ∈ R.
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P4 Expectation, covariance and correlation

P4.1 Expectation of a function of random vari-
ables

Definition If X1, X2, . . . , Xn are jointly continuous, then the

expectation of the function g(X1, X2, . . . , Xn) is

E[g(X1, . . . , Xn)] =

∫
· · ·
∫
Rn
g(x1, . . . , xn)fX1,...,Xn

(x1, . . . , xn)dx1 · · · dxn

Note that if X1, X2, . . . , Xn are discrete, we replace the inte-

gral by summations and the joint p.d.f. with the joint p.m.f.

Properties of expectation

1. E [
∑n

i=1Xi] =
∑n

i=1E[Xi].

2. If X and Y are independent, then E[XY ] = E[X]E[Y ].

3. If X and Y are independent and g and h are any real

functions, then E[g(X)h(Y )] = E[g(X)]E[h(Y )].

P4.2 Covariance

Definition The covariance of two random variables, X and

Y , is defined by

Cov(X, Y ) = E [(X − E[X])(Y − E[Y ])]

Properties of covariance

1. Cov(X, Y ) = E[XY ]− E[X]E[Y ].

2. Cov(X,X) = Var(X).

3. Cov(aX + b, cY + d) = acCov(X, Y ).
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4.

Cov

(
m∑
i=1

aiXi,
n∑
j=1

bjYj

)
=

m∑
i=1

n∑
j=1

aibjCov(Xi, Yj).

5. Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X, Y ).

6.

Var

(
n∑
i=1

aiXi

)
=

n∑
i=1

a2
iVar(Xi) + 2

∑
1≤i<j≤n

aiajCov(Xi, Xj).

7. If X1, X2, . . . , Xn are independent, then

Var

(
n∑
i=1

Xi

)
=

n∑
i=1

Var(Xi).

8. If X and Y are independent, then Cov(X, Y ) = 0. The

converse is NOT true.

Example P4.1 Suppose X and Y are discrete random vari-

ables whose probability mass function is given by the following

table:

X

-1 0 1 pY (y)

Y 0 0 1/3 0 1/3

1 1/3 0 1/3 2/3

pX(x) 1/3 1/3 1/3

What is the covariance of X and Y ? Are X and Y indepen-

dent?
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E[X] = −1(1/3) + 0(1/3) + 1(1/3) = 0

E[Y ] = 0(1/3) + 1(2/3) = 2/3

E[XY ] = −1(0)(0) + 0(0)(1/3) + 1(0)(0)

−1(1)(1/3) + 0(1)(0) + 1(1)(1/3)

= 0

Cov(X, Y ) = E[XY ]− E[X]E[Y ] = 0− 0 = 0.

However, pX,Y (0, 0) = 1/3 6= pX(0)pY (0) = (1/3)(1/3).

Therefore, X and Y are not independent, but Cov(X, Y ) = 0.

P4.3 Correlation

Definition If Var(X) > 0 and Var(Y ) > 0, then the correla-

tion of X and Y is defined by

ρ(X, Y ) =
Cov(X, Y )√

Var(X)Var(Y )
.

Properties of correlation

1. −1 ≤ ρ(X, Y ) ≤ 1.

2. If X and Y are independent, then ρ(X, Y ) = 0. Note,

again, that the converse is not true.

3. ρ(aX + b, cY + d) =

{
ρ(X, Y ) if ac > 0,

−ρ(X, Y ) if ac < 0.
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P5 Central limit theorem

Let X1, X2, . . . , Xn be independent and identically distributed

random variables (i.e. a random sample) with finite mean µ

and variance σ2. Let Sn = X1 + · · ·+Xn. Then

Sn − nµ
σ
√
n

d−−−−→ N(0, 1).

Alternatively,
X̄n − µ
σ/
√
n

d−−−−→ N(0, 1).

Example P5.1 Suppose X1, X2, . . . , X100 are i.i.d. exponen-

tial random variables with parameter λ = 4.

(a) Find P (S100 > 30).

(b) Find limits within which X̄ will lie with probability 0.95

(a) Since X1, X2, . . . , X100 are i.i.d. exponential random vari-

ables with parameter λ = 4, E [Xi] = 1
4 and Var(Xi) = 1

16 .

Hence,

E [S100] = 100
1

4
= 25;

Var(S100) = 100
1

16
=

25

4
.

Given n = 100, S100 is approximately normally distributed by

the central limit theorem (CLT). Therefore,

P (S100 > 30) = P

S100 − 25√
25
4

>
30− 25√

25
4


≈ P (Z > 2) = 1− P (Z ≤ 2)

= 0.0228.
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(b) Since X1, X2, . . . , X100 are i.i.d. exponential random vari-

ables with parameter λ = 4, E [Xi] = 1
4 and Var(Xi) = 1

16 .

Therefore, E
[
X̄
]

= 1
4 and Var(X̄) = 1/16

100 .

Since n = 100, X̄ will be approximately normally distributed

by the CLT, hence

0.95 = P (a < X̄ < b)

= P

(
a− 1/4√

1/1600
<

X̄ − 1/4√
1/1600

<
b− 1/4√

1/1600

)

≈ P

(
a− 1/4√

1/1600
< Z <

b− 1/4√
1/1600

)
= P (−z.025 < Z < z.025).

This implies,

a− 1/4√
1/1600

= −z.025 = −1.96,

b− 1/4√
1/1600

= z.025 = 1.96.

Hence,

a = 0.25− 1.96
1

40
= 0.201,

b = 0.25 + 1.96
1

40
= 0.299.
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P6 Transformations

P6.1 Univariate case

Suppose X is a continuous random variable with p.d.f. f(x).

Let g be a continuous function, then Y = g(X) is a continuous

random variable. Our aim is to find the p.d.f. of Y .

The distribution function method has two steps:

1. Compute the c.d.f. of Y , i.e.

FY (y) = P (Y ≤ y).

2. Derive the p.d.f. of Y , fY (y), using the fact that

fY (y) =
dFY (y)

dy
.

Example P6.1 Let Z ∼ N(0, 1). Find the p.d.f. of Y = Z2.

FY (y) = P (Y ≤ y) = P (Z2 ≤ y) = P (−√y ≤ Z ≤ √y)

= P (Z ≤ √y)− P (Z ≤ −√y)

= FZ(
√
y)− FZ(−√y)

Note that if we want a specific formula for FY , then we can

evaluate the resulting c.d.f.’s. In this case,

FZ(
√
y) =

∫ √y
−∞

1√
2π
e−

z2

2 dz.

Therefore,

fY (y) =
dFY (y)

dy
=

d

dy
FZ(
√
y)− d

dy
FZ(−√y)

=
d

dz
FZ(z)

d

dy
(z)− d

dz
FZ(−z)

d

dy
(−z)
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where z = y1/2. Now d
dzFZ(z) = 1√

2π
e−

z2

2 , so

fY (y) =
1√
2π
e−

(
√
y)2

2
1

2
√
y
− 1√

2π
e−

(−√y)2
2
−1

2
√
y

=
1

2
√

2πy
e−

y
2 +

1

2
√

2πy
e−

y
2

=
1√
2πy

e−
y
2

if y > 0.

Note that Y = Z2 has a Chi-squared distribution with 1 degree

of freedom.

P6.2 Bivariate case

Suppose X1 and X2 are continuous random variables with joint

p.d.f. given by fX1,X2
(x1, x2) Let (Y1, Y2) = T (X1, X2). We

want to find the joint p.d.f. of Y1 and Y2.

Definition Suppose T : (x1, x2) → (y1, y2) is a one-to-one

transformation in some region of R2, such that x1 = H1(y1, y2)

and x2 = H2(y1, y2). The Jacobian of T−1 = (H1, H2) is

defined by

J(y1, y2) =

∣∣∣∣∣ ∂H1

∂y1
∂H1

∂y2
∂H2

∂y1
∂H2

∂y2

∣∣∣∣∣ .
Theorem Let (Y1, Y2) = T (X1, X2) be some transformation

of random variables. If T is a one-to-one function and the

Jacobian of T−1 is non-zero in T (A) where

A = {(x1, x2) : fX1,X2
(X1, X2) > 0},

then the joint p.d.f. of Y1 and Y2, fY1,Y2(y1, y2), is given by

fX1,X2
(H1(y1, y2), H2(y1, y2))|J(y1, y2)|

if (y1, y2) ∈ T (A) and 0 otherwise.
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Example P6.2 Let X1 ∼ U(0, 1), X2 ∼ U(0, 1) and suppose

that X1 and X2 are independent. Let

Y1 = X1 +X2, Y2 = X1 −X2.

Find the joint p.d.f. of Y1 and Y2.

The joint p.d.f. of X1 and X2 is

fX1,X2
(x1, x2) = fX1

(x1)fX2
(x2)

=

{
1 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1,

0 otherwise.

Now T : (x1, x2) 7→ (y1, y2) is defined by

y1 = x1 + x2, y2 = x1 − x2.

Hence,

x1 = H1(y1, y2) =
y1 + y2

2
, x2 = H2(y1, y2) =

y1 − y2

2
.

The Jacobian of T−1 is

J(y1, y2) =

∣∣∣∣∣ ∂H1

∂y1
∂H1

∂y2
∂H2

∂y1
∂H2

∂y2

∣∣∣∣∣ =

∣∣∣∣∣ 1
2

1
2

1
2 −

1
2

∣∣∣∣∣ = −1

2
.

Since A = {(x1, x2) : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1} and since the

lines x1 = 0, x1 = 1, x2 = 0 and x2 = 1 map to the lines

y1 + y2 = 0, y1 + y2 = 2, y1 − y2 = 0 and y1 − y2 = 2, it can

be checked that

T (A) = {(y1, y2) : 0 ≤ y1 + y2 ≤ 2, 0 ≤ y1 − y2 ≤ 2}.

Thus,

fY1,Y2(y1, y2) =

{
1
2fX1,X2

(H1(y1, y2), H2(y1, y2)) (y1, y2) ∈ T (A),

0 otherwise.

=

{
1
2 0 ≤ y1 + y2 ≤ 2, 0 ≤ y1 − y2 ≤ 2,

0 otherwise.
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Example P6.3 Suppose that X1 and X2 are i.i.d. exponential

random variables with parameter λ. Let Y1 = X1

X2
and Y2 =

X1 +X2.

(a) Find the joint p.d.f. of Y1 and Y2.

(b) Find the p.d.f. of Y1.

(a) Since X1 and X2 are i.i.d. exponential random variables

with parameter λ, the joint p.d.f. of X1 and X2 is given by

fX1,X2
(x1, x2) = fX1

(x1)fX2
(x2)

=

{
λe−λx1λe−λx2 if x1, x2 > 0

0 otherwise.

=

{
λ2e−λ(x1+x2) if x1, x2 > 0

0 otherwise.

Solving simultaneously for X1 and X2 in terms of Y1 and Y2,

gives X1 = Y1X2 and

Y2 = X1 +X2 = Y1X2 +X2 = X2(Y1 + 1).

Hence, X2 = Y2
Y1+1 and X1 = Y1X2 = Y1Y2

Y1+1 .

Computing the Jacobian of T−1, we get

J(y1, y2) =

∣∣∣∣∣ ∂H1

∂y1
∂H1

∂y2
∂H2

∂y1
∂H2

∂y2

∣∣∣∣∣ =

∣∣∣∣∣ y2
(y1+1)2

y1
y1+1

− y2
(y1+1)2

1
y1+1

∣∣∣∣∣
=

y2

(y1 + 1)3
+

y1y2

(y1 + 1)3

=
y2

(y1 + 1)2
.

Now,

A = {(x1, x2) : fX1,X2
(x1, x2) > 0}

= {(x1, x2) : x1 > 0, x2 > 0} .
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Therefore, T (A) ⊆ {(y1, y2) : y1 > 0, y2 > 0}. Since x1 > 0

and x2 > 0, y1 = x1
x2
> 0. Furthermore, since x1 = y1y2

y1+1 > 0,

then y1y2 > 0 implies y2 > 0. Therefore,

T (A) = {(y1, y2) : y1 > 0, y2 > 0} .

Consequently, the joint p.d.f. of Y1 and Y2, f = fY1,Y2(y1, y2)

is given by

f = fX1,X2
(H1(y1, y2), H2(y1, y2))|J(y1, y2)|

= fX1,X2

(
y1y2

1 + y1
,

y2

1 + y1

) ∣∣∣∣ y2

(1 + y1)2

∣∣∣∣
= λ2e

−λ
(

y1y2
(1+y1)

+
y2

(1+y1)

)
y2

(1 + y1)2

= λ2e−λy2
y2

(1 + y1)2

if y1, y2 > 0 and 0 otherwise.

(b) The p.d.f. of Y1 is the marginal p.d.f. of Y1, therefore,

fY1(y1) =

∫ ∞
0

λ2e−λy2
y2

(1 + y1)2
dy2

=
1

(1 + y1)2

∫ ∞
0

λe−λy2dy2

=
1

(1 + y1)2

if y1 > 0. So,

fY1(y1) =

{
1

(1+y1)2 if y1 > 0

0 otherwise.

Note that one can extend the method of transformations to

the case of n random variables.
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P7 Multivariate Normal distribution

Definition A random vector X = (X1, X2, . . . , Xn)
T is said

to have an n dimensional normal distribution with parameters

µ and Σ if the joint p.d.f. of X is given by

fX(x) = (2π)−
n
2 |Σ|−

1
2 exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
,

where µ = (µ1, µ2, . . . , µn)
T and Σ = (σij) is an n × n real,

symmetric, positive definite matrix with all positive eigenval-

ues. It is denoted by

X ∼ Nn(µ,Σ).

Properties of the multivariate Normal distribution

1. If D is a p× n matrix and X ∼ Nn(µ,Σ), then

Z = DX ∼ Np(Dµ,DΣDT ).

2. The marginal distribution of each component Xi is normal

with E[Xi] = µi and Var(Xi) = σii. Note that this is a direct

consequence of property (1) with

D = (0, . . . , 0, 1, 0, . . . , 0),

i.e. the ith component equal to 1.

3. The components X1, X2, . . . , Xn of a multivariate normal

random vector are independent of each other if and only if

X1, X2, . . . , Xn are uncorrelated, i.e. σij = Cov(Xi, Xj) = 0

for all i 6= j.

4. Conditional distributions derived from joint normal distri-

butions are normal.

Bivariate Normal distribution This is a special case with

n = 2.
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Definition The random variables X1 and X2 are said to have

a bivariate Normal distribution with mean µ = (µ1, µ2) and

variance-covariance matrix Σ =

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
if their

joint p.d.f. is given by

fX1,X2
(x1, x2) =

1

2πσ1σ2

√
1− ρ2

exp

{
− 1

2(1− ρ2)

[(
x1 − µ1

σ1

)2

−2ρ

(
x1 − µ1

σ1

)(
x2 − µ2

σ2

)
+

(
x2 − µ2

σ2

)2
]}

.

Notes

1. X1 ∼ N(µ1, σ
2
1) and X2 ∼ N(µ2, σ

2
2) and Cov(X1, X2) =

ρσ1σ2.

2. (X1|X2 = x2) ∼ N
(
µ1 + ρσ1σ2 (x2 − µ2), σ

2
1(1− ρ2)

)
.

3. (X2|X1 = x1) ∼ N
(
µ2 + ρσ2σ1 (x1 − µ1), σ

2
2(1− ρ2)

)
.

Example P7.1 Suppose X = (X1, X2, X3)
T ∼ N3(0,Σ),

where

Σ =

 2 1 0

1 4 0

0 0 5

 .
(a) Find the distribution of Z = X1 +X2. (b) Determine the

constant c such that Z1 = 2X1 + cX2 and Z2 = 2X1 + cX3

are independent.

(a) Let Z = DX = X1+X2. ThenD = (1 1 0). By property
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(1), Z ∼ N(D0,DΣDT ), where D0 = 0 and

DΣDT = (1 1 0)

 2 1 0

1 4 0

0 0 5


 1

1

0


= (3 5 0)

 1

1

0

 = 8.

Therefore, Z ∼ N(0, 8).

(b) Let Z =

(
Z1

Z2

)
= DX. Choose

D =

[
2 c 0

2 0 c

]
.

By property (1), Z ∼ N2(D0,DΣDT ), where D0 = 0 and

DΣDT =

[
2 c 0

2 0 c

] 2 1 0

1 4 0

0 0 5


 2 2

c 0

0 c


=

[
4 + c 2 + 4c 0

4 2 5c

] 2 2

c 0

0 c


=

[
8 + 4c+ 4c2 8 + 2c

8 + 2c 8 + 5c2

]

For Z1 to be independent of Z2, Cov(Z1, Z2) = 8 + 2c = 0.

Therefore, c = −4.
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P8 Moment generating functions

Recall, for any random variable X, E
[
Xk
]

is called the kth

moment of X, if E
[
Xk
]

exists (i.e. if E
[
|Xk|

]
< ∞). For

example,

E [X] = µ is the first moment of X.

E
[
X2
]

is the second moment of X.

Definition The kth central moment of X is E
[
(X − µ)k

]
, if

E
[
|(X − µ)k|

]
<∞.

For example,

E
[
(X − µ)2

]
= Var(X)

is the second central moment of X;

S =
E
[
(X − µ)3

]
σ3

is a measure of skewness in the distribution;

K =
E
[
(X − µ)4

]
σ4

is a measure of kurtosis of the distribution.

Definition For a random variable X, if E
[
etX
]

exists for all

t ∈ (−h, h), h > 0, then

MX(t) = E
[
etX
]

is called the moment generating function (m.g.f.) of X.

From calculus, recall that the power series expansion of eX is

given by

eX =
∞∑
k=0

Xk

k!

if −∞ < X <∞. Then for any real t,

etX =
∞∑
k=0

(tX)k

k!
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if −∞ < X <∞.

Suppose that E
[
etX
]

exists for all t ∈ (−h, h), h > 0, then

E
[
etX
]
<∞ for all t ∈ (−h, h), h > 0. Therefore,

E
[
etX
]

= E

[ ∞∑
k=0

tkXk

k!

]
=

∞∑
k=0

E

[
tkXk

k!

]
=

∞∑
k=0

E
[
Xk
]
tk

k!

for all t ∈ (−h, h).

Hence,

MX(t) = E
[
etX
]

= 1 + E [X] t+
E
[
X2
]
t2

2!
+
E
[
X3
]
t3

3!
+ · · ·

if t ∈ (−h, h).

Note that for the m.g.f. of X to exist, all moments of X must

exist. Hence not all random variables will have a m.g.f.

Example P8.1 Find the m.g.f. of X ∼ Poisson(λ).

If X ∼ Poisson(λ), then its p.m.f. is given by

pX(x) =

{
e−λλx

x! if x = 0, 1, 2, . . .

0 otherwise.

Then,

MX(t) = E
[
etX
]

=
∑
x

etxpX(x) =
∞∑
x=0

etx
e−λλx

x!

= e−λ
∞∑
x=0

(etλ)x

x!
= e−λee

tλ = eλ(et−1)
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for all real t.

Example P8.2 Find the m.g.f. of X ∼ U(0, 1).

The m.g.f. is given by

MX(t) = E
[
etX
]

=

∫ ∞
−∞

etxfX(x) dx =

∫ 1

0

etx 1 dx =
1

t
etx
∣∣1
0

=
1

t
et − 1

t
e0 =

1

t
(et − 1)

if t 6= 0. If t = 0,

MX(t) = MX(0) = E
[
e0X
]

= E [1] = 1.

Therefore,

MX(t) =

{
1
t (e

t − 1) if t 6= 0

1 if t = 0.

Example P8.3 Find the m.g.f. of X ∼ N(µ, σ2).

MX(t) = E[etX ] =

∫ ∞
−∞

etx
1√

2πσ2
e−

1
2σ2

(x−µ)2dx

=
1√

2πσ2

∫ ∞
−∞

e−
1

2σ2
{x2−2x(µ+tσ2)+µ2}dx

=
1√

2πσ2

∫ ∞
−∞

e−
1

2σ2
{(x−(µ+tσ2))2−σ2(2tµ+t2σ2)}dx

= etµ+ 1
2 t

2σ2

∫ ∞
−∞

1√
2πσ2

e−
1

2σ2
{x−(µ+tσ2)}2dx

= etµ+ 1
2 t

2σ2

.

Properties of the m.g.f.

35



1. For any random variable X,

MX(0) = E
[
e0X
]

= E [1] = 1.

2. Recall,

MX(t) = 1 + E [X] t+
E
[
X2
]
t2

2!
+
E
[
X3
]
t3

3!
+ · · ·

if t ∈ (−h, h). Therefore,

M ′
X(t) = E [X] + 2

E
[
X2
]
t

2!
+ 3

E
[
X3
]
t2

3!
+ · · ·

if t ∈ (−h, h). Hence,

M ′
X(0) = E [X] .

Furthermore,

M ′′
X(t) = E

[
X2
]

+ (3)(2)
E
[
X3
]
t

3!
+ · · ·

if t ∈ (−h, h). Hence,

M ′′
X(0) = E

[
X2
]
.

In general, M
(n)
X (t) = E

[
XnetX

]
and

M
(n)
X (0) = E [Xn] .

Example P8.4 The m.g.f. of a Poisson random variable is

given by MX(t) = eλ(et−1) for all real t. Find the mean and

variance of X.

Since M ′
X(t) = λeteλ(et−1) = λet+λ(et−1),

E [X] = M ′
X(0) = λe0eλ(e0−1) = λ.
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Also, since M ′′
X(t) = λ(1 + λet)et+λ(et−1),

E
[
X2
]

= M ′′
X(0) = λ(1 + λe0)e0+λ(e0−1)

= λ(1 + λ) = λ+ λ2.

Hence,

Var(X) = E
[
X2
]
− (E [X])2 = λ+ λ2 − λ2 = λ.

Theorem There is a one-to-one correspondence between m.g.f.’s

and c.d.f.’s. In other words, the moment generating function

uniquely determines the distribution function.

Theorem If X1, X2, . . . , Xn are independent random vari-

ables, then the moment generating function of X1 + · · ·+Xn

is given by

M∑n
i=1Xi

(t) =
n∏
i=1

MXi
(t).

Proof Let X1, X2, . . . , Xn be independent random variables

with m.g.f.’s MXi
(t), then

M∑n
i=1Xi

(t) = E
[
e(
∑n
i=1Xi)t

]
= E

[
n∏
i=1

eXit

]

=
n∏
i=1

E
[
eXit
]

since X1, X2, . . . , Xn are independent.

Therefore, M∑n
i=1Xi

(t) =
∏n

i=1MXi
(t).

Example P8.5 The m.g.f. of X ∼ N(µ, σ2) is given by

MX(t) = etµ+ 1
2 t

2σ2

for all real t. Let X1, X2, . . . , Xn be a ran-

dom sample from N(µ, σ2). Find the m.g.f. and distribution

of X1 + · · ·+Xn.
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The m.g.f. of X1 + · · ·+Xn is

M∑n
i=1Xi

(t) =
n∏
i=1

MXi
(t) =

n∏
i=1

etµ+ 1
2 t

2σ2

= etnµ+ 1
2nt

2σ2

.

From the theorem above, we know that m.g.f.’s are unique.

Hence,

M∑n
i=1Xi

(t) = et(nµ)+ 1
2 t

2(nσ2)

is the m.g.f. of a normal distribution with mean nµ and vari-

ance nσ2. Therefore if X1, X2, . . . , Xn is a random sample

from N(µ, σ2) then
∑n

i=1Xi ∼ N(nµ, nσ2).
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P9 Markov Chains

Consider the following example, known as Gambler’s Ruin.

Suppose a gambler has $1. Each time he plays he bets $1.

If he wins the game, his bet is returned and he wins an addi-

tional $1. If he loses the game, he loses the $1 he bet. The

probability of him winning any game is 0.6, the probability of

him losing any game is 0.4. The gambler continues to play

until either he is ruined (i.e. he has no money left) or he has

$4.

Let Xn be the amount of money the gambler has after n

games.

Definition The set of all possible outcomes of Xn is called

the state space S.

In the Gambler’s Ruin example, S = {0, 1, 2, 3, 4}.

Definition A set of random variables {Xn : n = 0, 1, 2, . . . }
with a finite or countably infinite state space S is said to

be a Markov Chain, if for all i0, . . . , in−1, i, j ∈ S and n =

0, 1, 2, . . . ,

P (Xn+1 = j|Xn = i,Xn−1 = in−1, . . . , X0 = i0) = P (Xn+1 = j|Xn = i).

Markovian Property Given the state of the Markov chain at

present (Xn), its future state (Xn+1) is independent of the

past states (Xn−1, . . . , X1, X0).

Definition A Markov chain with state space S is said to have

stationary transition probabilities, if for all i, j ∈ S, the prob-

ability of transition from state i to state j, in one step, does

not depend on the time that the transition will occur. (i.e.

P (Xn+1 = j|Xn = i) does not depend on n.)
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Notation If {Xn : n = 0, 1, . . . } is a Markov chain with

stationary transition probabilities, denote

pij = P (Xn+1 = j|Xn = i) for i, j ∈ S.

Definition If we let

P = (pij) =


p00 p01 p02 . . .

p10 p11 p12 . . .

p20 p21 p22 . . .
...

...
... . . .

 ,

then P is called the transition probability matrix.

Note that for each row i,
∑∞

j=0 pij = 1. The sum of the

columns is not necessarily 1.

Example P9.1 At an intersection, a working traffic light will

be out of order the next day with probability 0.07, and an out-

of-order traffic light will be working the next day with proba-

bility 0.88. Let Xn = 1 if on day n the traffic light is working;

Xn = 0 if on day n the traffic light is out-of-order.

(a) What is the state space of the Markov Chain {Xn : n =

0, 1, . . . }?
(b) Compute the transition probability matrix P .

(a) The state space is S = {0, 1}.
(b) The transition probability matrix is

P =

(
0.12 0.88

0.07 0.93

)
.

Example P9.2 Consider again the Gambler’s Ruin Example,

with state space S = {0, 1, 2, 3, 4}. Compute the transition

probability matrix.
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The transition probability matrix is

P =


1 0 0 0 0

0.4 0 0.6 0 0

0 0.4 0 0.6 0

0 0 0.4 0 0.6

0 0 0 0 1

 .

Example P9.3 (One-dimensional random walk) In a large

town, Park Avenue is a long north-south avenue with many

intersections. A drunken man is wandering along the avenue

and does not really know which way he is going. Suppose that

at the end of each block, he decides to walk either north with

probability p or south with probability 1 − p. Let Xn denote

the intersection where the drunk finds himself after n steps.

(Denote the central intersection in the city of Park Avenue

with Main Street as the origin O.)

Main St

Park

Ave −2

1

2

3

−1
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(a) What is the state space of the Markov Chain?

(b) What are the transition probabilities at state i?

(a) The state space is S = {. . . ,−2,−1, 0, 1, 2, . . . }.
(b) The transition probabilities at state i are

pij =


p if j = i+ 1

1− p if j = i− 1

0 otherwise.

Notation Let {i→ j} denote moving from state i to state j,

then {i → j → k} denotes moving first from state i to state

j then to state k. Therefore, if P ({i→ j}) = pij, then

P ({i→ j → k}) = P ({i→ j})P ({j → k})
= pijpjk.

Let p
(n)
ij be the probability of moving from state i to j in n

steps. Then

p
(n)
ij = P (Xn+m = j|Xm = i), n,m ≥ 0.

Note that

P
(0)
ij = P (Xm = j|Xm = i) =

{
1 if i = j

0 if i 6= j.

P
(1)
ij = P (Xm+1 = j|Xm = i) = pij.

Definition The n step transition probability matrix is

P (n) =


p

(n)
00 p

(n)
01 p

(n)
02 . . .

p
(n)
10 p

(n)
11 p

(n)
12 . . .

p
(n)
20 p

(n)
21 p

(n)
22 . . .

...
...

... . . .

 .
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Note that in general, P
(n)
ij 6= (pij)

n.

The Chapman-Kolmogorov Equations state that

p
(m+n)
ij =

∞∑
k=0

p
(m)
ik p

(n)
kj

or P (m+n) = P (m)P (n).

Recall Example P9.1, the traffic light example where S =

{0, 1}, state 0 is the traffic lights not working, state 1 is the

traffic light working and P =

(
0.12 0.88

0.07 0.93

)
. Then

P 2 = P × P =

(
0.0760 0.9240

0.0735 0.9265

)
.

Therefore, the probability of an out-of-order traffic light not

working in 2 days is p
(2)
00 = 0.076.

Recall Example P9.2, the Gambler’s Ruin example where S =

{0, 1, 2, 3, 4} and

P =


1 0 0 0 0

0.4 0 0.6 0 0

0 0.4 0 0.6 0

0 0 0.4 0 0.6

0 0 0 0 1

 ,

then

P 10 =


1.000 0 0 0 0

0.575 0.013 0 0.019 0.393

0.300 0 0.025 0 0.675

0.117 0.008 0 0.013 0.862

0 0 0 0 1.000

 ,

where p
(10)
ij is the probability of having j dollars after 10 plays

if one began with i dollars (at any stage of the game).
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Theorem Let {Xn : n = 0, 1, 2, . . . } be a Markov chain

with transition probability matrix P = (pij). For i ≥ 0, let

p(i) = P (X0 = i) be the probability mass function of X0.

Then the probability mass function of Xn is given by

P (Xn = j) =
∞∑
i=0

p(i)p
(n)
ij j = 0, 1, 2, . . .

Proof Since states {0, 1, 2, . . . } are disjoint, we can use the

law of total probability so that

P (Xn = j) =
∞∑
i=0

P (Xn = j|X0 = i)P (X0 = i)

=
∞∑
i=0

p(i)p
(n)
ij .

Note that a Markov chain is uniquely determined by its tran-

sition matrix.

Example P9.4 Recall Example P9.1, the traffic light example.

Suppose the probability that a traffic light functions properly

on any day is 0.95. What is the probability that the light is

out-of-order in 2 days?

Given P (X0 = 1) = 0.95, then P (X0 = 0) = 0.05. We want

to find P (X2 = 0).

P (X2 = 0) = P (X2 = 0|X0 = 0)P (X0 = 0)

+P (X2 = 0|X0 = 1)P (X0 = 1)

= p
(2)
00 (0.05) + p

(2)
10 (0.95)

= (0.076)(0.05) + (0.0735)(0.95)

= 0.0038 + 0.069825 = 0.073625.
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Example P9.5 Recall Example P9.2, the Gambler’s Ruin ex-

ample. Suppose that it is equally likely that a man begins the

game with $1, $2 or $3 what is the probability that he has won

the game (has $4) by the 10th attempt?

Given P (X0 = 1) = P (X0 = 2) = P (X0 = 3) = 1
3 , we want

to find P (X10 = 4).

P (X10 = 4) = P (X10 = 4|X0 = 1)P (X0 = 1)

+P (X10 = 4|X0 = 2)P (X0 = 2)

+P (X10 = 4|X0 = 3)P (X0 = 3)

= (0.393 + 0.675 + 0.862)
1

3
= 0.643.

Definition A state j of a Markov chain is said to absorbing if

once the process enters state j it remains there forever. (i.e.

A state j of a Markov chain is absorbing if pjj = 1).

For example, in the Gambler’s Ruin example states 0 and 4 are

absorbing since once you’ve lost you’re out and once you’ve

won then you’ve finished the game. (Note p00 = 1 and p44 =

1.)

In the traffic lights example, no states are absorbing. There is

always a non-zero probability of moving to the other state.

Some related questions are:

What is the probability of a Markov chain eventually being

absorbed into state j?

What is the expected number of steps until one arrives in

absorption state j?

Notation Let {Xn : n = 0, 1, 2, . . . } be a Markov chain,
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then we denote the probability that, starting from state i, the

process will return to state i for the first time after exactly n

steps as f
(n)
ii . Let

fi =
∞∑
n=1

f
(n)
ii

be the probability that starting from state i the process will

return to state i after a finite number of steps.

Definition A state i is said to be recurrent if fi = 1. If

fi < 1, then state i is called transient (i.e. there is a positive

probability that the process will not return to i).

For the traffic light example we observe the following:

P =

(
0.12 0.88

0.07 0.93

)

P 2 =

(
0.0760 0.9240

0.0735 0.9265

)

P 3 =

(
0.073800 0.926200

0.073675 0.926325

)

P 4 =

(
0.07369000 0.92631000

0.07368375 0.92631625

)

P 5 =

(
0.0736845000 0.9263155000

0.0736841875 0.9263158125

)

It seems that P n →

(
0.07368 0.92632

0.07368 0.92632

)
as n → ∞.

Therefore as n increases, it doesn’t matter what our initial

state was, the probability of transitioning to the other states

becomes the same.

Definition If a Markov chain, for each j ≥ 0, lim
n→∞

p
(n)
ij exists
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and is independent of i, we say that the Markov chain is in

equilibrium or steady state. The limits

πj = lim
n→∞

p
(n)
ij ,

j ≥ 0, are called the stationary probabilities of the Markov

chain.

If π is the row vector of stationary probabilities, then we can

find π by solving

π = πP.

For the traffic light example, set π = (π1π2). Then

π = πP

⇔ (π1 π2) = (π1 π2)

(
0.12 0.88

0.07 0.93

)
⇒ π1 = 0.12π1 + 0.07π2

and π2 = 0.88π1 + 0.93π2.

We then use the fact that π1 = 1− π2 to obtain

(π1 π2) =

(
0.07

0.95

0.88

0.95

)
≈ (0.07368 0.92632).
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