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Statistics

S1 Statistical modelling overview

S1.1 What is statistics?

One view: “Statistics is the science of identifying and quanti-

fying structure in a population, apportioning sources of uncer-

tainty, from information contained in a sample”.

Another view: “Statistics is the science of collecting, organis-

ing, analysing and presenting data”.

S1.2 The statistical paradigm

Statistical analysis consists of a number of steps:

Specification of population

Sampling design of a protocol

Data collection

Exploratory analysis

Model specification

Diagnostics (Model verification)

Inference

Interpretation

Communication

The procedure is not usually linear - some iteration may be

necessary.

S1.3 Population and sample

From a sample of 52 university students, four individuals were

found to be left-handed. We can easily summarise the sample
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information as the proportion 4
52 = 1

13 . However, what are

we able to say about the population? What proportion of all

university students are left-handed? Is 1
13 a good estimate and

what do we mean by ‘good’?

We identify the important features of statistical inference in

this example. Here, the population are all university students.

The population has some parameter or characteritic, θ, which

we wish to estimate. In this example, θ is the probability of

an individual being left-handed.

From the population we take a random sample, which means

each member of the population has an equal chance of being

chosen. The sample gives rise to data x1, x2, . . . , xn. We esti-

mate the parameter θ by means of a statistic T (x1, x2, . . . , xn).

S1.4 Modelling assumptions

1. Identically distributed assumption: Every sample observa-

tion (data point) x is the outcome of a random variable X

which has an identical distribution (either discrete or continu-

ous) for every member of the population.

2. Independence assumption: The random variables X1, X2, . . . , Xn

which give rise to the data points x1, x2, . . . , xn are indepen-

dent.

Note that we defined a random sample to be a set of i.i.d.

random variables.

The subtle point here is that we are treating the observed data

as just one possible outcome from the many different outcomes

that could occur.
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S1.5 Parametric models

In the parametric approach to statistics (inference), we assume

that the random sample that we collect was generated by some

specific probability distribution which is completely known, ex-

cept for a small number of parameters. For example,

(a) we could assume that the annual income in the U.K. is

normally distributed but we don’t know its mean, µ, or its

variance, σ2;

(b) in studying the effectiveness of a certain drug’s ability to

decrease the size of tumours in laboratory rats, we assume that

the outcome of the tumour size being decreased (or not) has

a Binomial distribution where n is the known sample size and

p is not.

Approaches to determining the underlying model:

1. Physical argument, e.g. counts of events from a Poisson

process follow a Poisson distribution.

2. Mathematical argument, e.g. central limit theorem leading

to a normal distribution.

3. Flexible model which fairly arbitrarily covers a wide range

of possibilities.
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S2 Parameter Estimation

S2.1 Preliminaries

Definition A statistic, T (X), is any function of the random

sample.

Note that since T (X) is a function of random variables, it

is also a random variable. Hence it will also have all the

properties of a random variable. Most importantly, it has a

distribution associated with it.

Definition A statistic that is used for the purpose of estimat-

ing an unknown population parameter is called an estimator.

Definition A realised value of an estimator, T (x), (i.e. the

value of T (X) evaluated at a particular outcome of the ran-

dom sample) is called an estimate.

Suppose we want to estimate the average annual income in

the U.K. Let X1, X2, . . . , Xn be a random sample of annual

incomes. Possible estimators might include:

1. T1(X) = X1+X2+···+Xn

n ,

2. T2(X) = min(X1, X2, . . . , Xn),

3. T3(X) = X1.

S2.2 Judging estimators

Let θ be a population parameter we wish to estimate. Since

any function of the sample data is a potential estimator of θ,

how should we determine whether an estimator is good or not?

What qualities should our estimator have?

Quality 1: Unbiasedness
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Definition The estimator T (X) is an unbiased estimate of θ

if

E (T (X)) = θ.

Otherwise, we say that the estimator T (X) is biased and we

define B(T ) = E (T (X))− θ to be the bias of T .

Definition If B(T )→ 0 as the sample size n→∞, then we

say that T (X) is asymptotically unbiased for θ.

Quality 2: Small variance

Definition If two estimators T1(X) and T2(X) are both unbi-

ased for θ, then T1(X) is said to be more efficient than T2(X)

if var (T1(X)) < var (T2(X)).

We would ideally like an estimator that is unbiased with a

small variance. So given two unbiased estimators, we choose

the most efficient estimator (the estimator with the smallest

variance). For comparing an estimator with a biased estimator,

we can use the mean-square error to quantify the trade-off

between bias and variance:

Definition The mean-square error of an estimator is defined

by

MSE(T ) = E
[
(T (X)− θ)2

]
.

Exercise: Prove MSE(T ) = var(T ) + (B(T ))2.

Quality 3: Consistency

Definition An estimator T (X) is said to be a consistent es-

timator for θ if

T (X) −→ θ as n→∞.
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This third desirable property can sometimes be established us-

ing the following theorem:

Theorem If E [T (X)]→ θ and Var (T (X))→ 0 as n→∞,

then T (X) is a consistent estimator for θ.

Note that these are sufficient but not necessary conditions

for consistency. Since MSE(T ) = var(T ) + (B(T ))2, then

the theorem implies that if MSE(T ) → 0 then T (X) is a

consistent estimator for θ.

S2.3 Example: The sample mean

Suppose X1, X2, . . . , Xn is a random sample from any pop-

ulation with mean µ and variance σ2. The sample mean is

X̄ = 1
n

∑n
i=1Xi and is an estimator of µ. What are the prop-

erties of X̄?

1. Unbiasedness

E[X̄] = E

[
1

n
(X1 +X2 + . . .+Xn)

]
=

1

n
{E[X1] + E[X2] + . . .+ E[Xn]}

=
1

n
{µ+ µ+ . . .+ µ} =

1

n
nµ = µ.

2. Variance

Var(X̄) = Var

(
1

n

n∑
i=1

Xi

)
=

1

n2

n∑
i=1

Var(Xi)

=
1

n2

n∑
i=1

σ2 =
1

n2
nσ2 =

σ2

n
.
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3. Mean-square error

MSE(X̄) = Var(X̄) +B(X̄)2 =
σ2

n
.

4. Consistency

Since E[X̄] → µ and Var(X̄) → 0 as n → ∞, then X̄ is a

consistent estimator for µ.

S2.4 Example: The sample variance

Suppose X1, X2, . . . , Xn is a random sample from any popu-

lation with mean µ and variance σ2. Consider the estimator

σ̂2 =
1

n

n∑
i=1

(
Xi − X̄

)2
.

Note that
n∑
i=1

(Xi − µ)2 =
n∑
i=1

(Xi − X̄)2 +
n∑
i=1

(X̄ − µ)2.

Unbiasedness:

E[σ̂2] = E

[
1

n

n∑
i=1

(Xi − X̄)2

]

= E

[
1

n

n∑
i=1

(Xi − µ)2 − 1

n

n∑
i=1

(X̄ − µ)2

]

=
1

n

n∑
i=1

E
[
(Xi − µ)2

]
− 1

n

n∑
i=1

E
[
(X̄ − µ)2

]
=

1

n

n∑
i=1

Var(Xi)−
1

n

n∑
i=1

Var(X̄)

=
1

n
nσ2 − 1

n
n
σ2

n
=

(n− 1)σ2

n
6= σ2.
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Hence σ̂2 is a biased, although asymptotically unbiased, esti-

mator for σ2. Therefore,

s2 =
n

n− 1
σ̂2 =

1

n− 1

n∑
i=1

(Xi − X̄)2

is an unbiased estimator of σ2.

Useful formula

It can be shown (exercise) that

s2 =
1

n− 1

(
n∑
i=1

X2
i −

(
∑n

i=1Xi)
2

n

)
.

Notation

Given observed data x1, x2, . . . , xn then we define

s2
x =

1

n− 1

n∑
i=1

(x̄− xi)2 =
1

n− 1

(
n∑
i=1

x2
i −

(
∑n

i=1 xi)
2

n

)
.

Similarly, if we have data pairs (x1, y1), (x2, y2), . . . , (xn, yn)

we define

sxy =
1

n− 1

n∑
i=1

(x̄− xi)(ȳ − yi).

s2
x is called the sample variance;

sxy is called the sample covariance.

NOTE that some text books define these quantities without

the 1/(n− 1) term, i.e. they are just the sums.
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S3 Techniques for deriving estimators

S3.1 Method of Moments

Definition If E[Xk] exists, then E[Xk] is said to be the kth

moment of the random variable X.

For example,

E[X] = µ is the first moment of X.

E[X2] is the second moment of X.

Var(X) = E[X2] − (E[X])2 is a function of the first and

second moments.

Definition The kth sample moment is

µ̂k =
1

n

n∑
i=1

Xk
i .

The idea: Since,

E[µ̂k] = E

[
1

n

n∑
i=1

Xk
i

]
=

1

n

n∑
i=1

E
[
Xk
i

]
= E

[
Xk
i

]
,

then the kth sample moment is an unbiased estimator of the

kth moment of a distribution. Therefore, if one wants to es-

timate the parameters from a particular distribution, one can

write the parameters as a function of the moments of the distri-

bution and then estimate them by their corresponding sample

moments.

Example S3.1 Let X1, X2, . . . , Xn be a random sample from

any distribution with mean µ and variance σ2. Find the method
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of moments estimators for µ and σ2.

µ̂ = µ̂1 =
1

n

n∑
i=1

Xi = X̄,

σ̂2 = µ̂2 − (µ̂1)
2 =

1

n

n∑
i=1

X2
i −

(
1

n

n∑
i=1

Xi

)2

=
1

n

n∑
i=1

(Xi − X̄)2.

Example S3.2 Let X1, X2, . . . , Xn ∼ Bin(m, θ) (m known).

Find the method of moments estimator for θ.

The first moment of the Binomial distribution is mθ. There-

fore,

θ̂ =
µ̂1

m
=
X̄

m
.

Example S3.3 Let X1, X2, . . . , Xn ∼ Exp(θ). Find the method

of moments estimator for θ.

For x > 0, θ > 0, f(x|θ) = θe−θx. Then E(X) = 1/θ, so

1/θ̂ = X̄ and

θ̂ = 1/X̄.

Remarks

The sampling properties of the kth sample moment are fairly

desirable:

1. µ̂k is an unbiased estimator of E[Xk].

2. By the Central Limit Theorem, µ̂k is asymptotically normal.

3. µ̂k is a consistent estimator of E[Xk].
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If h is a continuous function, then θ̂ = h(µ̂1, µ̂2, . . . , µ̂k) is a

consistent estimator of θ = h(µ1, µ2, . . . , µk), but it may not

be an unbiased or asymptotically normal estimator.

Finding theoretical moments as a function of θ is not always

simple.

For some models, moments may not exist.

S3.2 Maximum likelihood estimation

In the study of probability, for random variables X1, X2, . . . , Xn

we consider the joint p.m.f. or p.d.f. just a function of the

random variables X1, X2, . . . , Xn. We assume the parameter

value(s) are completely known.

For example, if X1, X2, . . . , Xn is a random sample from a

Poisson distribution with mean λ, then

pX1,X2,...,Xn
(x1, x2, . . . , xn) =

e−nλλ
∑n
i=1 xi∏n

i=1 xi!

for λ > 0. See section P2.3.

However, in the study of statistics, we assume the parame-

ter values are unknown. Therefore, if we are given a spe-

cific random sample x1, x2, . . . , xn, then p(x1, x2, . . . , xn) will

take on different values for each possible value of the param-

eters (λ in the Poisson example). Hence, we can consider

p(x1, x2, . . . , xn) to also be a function of the unknown pa-

rameter and write p(x1, x2, . . . , xn|λ). We want to choose λ̂

to be the value of λ which most likely produced the random

sample x1, x2, . . . , xn, i.e. the value of λ which maximises

p(x1, x2, . . . , xn).

Example S3.4 Suppose we collect a random sample from a
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Poisson distribution such that X1 = 1, X2 = 2, X3 = 3 and

X4 = 4. Find the maximum likelihood estimator of λ.

The likelihood function is

L(λ) = p(x1, x2, x3, x4|λ) = p(1, 2, 3, 4|λ) =
e−4λλ10

1!2!3!4!
.

Since log x is a monotonic increasing function, if we maximise

logL(λ) this is equivalent to maximising L(λ). Hence,

logL(λ) = −4λ+ 10 log λ− log(1!2!3!4!).

To maximise this function we solve

d logL(λ)

dλ
= 0.

Now, d logL(λ)
dλ = −4 + 10

λ = 0. Hence, λ̂ = 5/2.

Definition The likelihood function of the random variables

X1, X2, . . . , Xn is the joint p.m.f. (discrete case) or joint p.d.f.

(continuous case) of the observed data given the parameter θ.

i.e. L(θ) = f(x1, x2, . . . , xn|θ).

Note that if X1, X2, . . . , Xn are a random sample from a dis-

tribution with probability function f(x|θ) then

L(θ) =
n∏
i=1

f(xi|θ).

Definition The maximum likelihood estimator (m.l.e. or MLE)

of θ is the value of θ which maximises L(θ).

Definition If L(θ) is the likelihood function of θ, then l(θ) =

logL(θ) is called the log likelihood function of θ.

Example S3.5 Let X ∼ Bin(m, θ). Find the MLE of θ.
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L(θ) =

(
m

x

)
θx(1− θ)m−x, 0 ≤ θ ≤ 1.

Take the derivative of L(θ),

dL(θ)

dθ
=

(
m

x

)
θx−1(1− θ)m−x−1 [x(1− θ)− (m− x)θ]

Setting dL(θ)
dθ = 0, we obtain

[x(1− θ)− (m− x)θ] = 0

Hence, θ̂ = x
m is a possible value for the MLE of θ.

Since L(θ) is a continuous function over [0, 1], the maximum

must exist at either the stationary point or at one of the

endpoints of the interval. Given, L(0) = 0, L(1) = 0, and

L
(
x
m

)
> 0, θ̂ = x

m is the MLE of θ.

Example S3.6 Let X1, X2, . . . , Xn be a random sample from

a Poisson distribution with mean λ. Find the MLE of λ.

L(λ) = p(x1, x2, . . . , xn|λ) =
e−nλλ

∑n
i=1 xi∏n

i=1 xi!
,

where λ > 0. So,

l(λ) = −nλ+
n∑
i=1

xi log λ− log
n∏
i=1

xi!.

Now

dl(λ)

dλ
= −n+

∑n
i=1 xi
λ

= 0,

so λ̂ =

∑n
i=1 xi
n

= x̄.

Since d2l(λ)
dλ2 =

−
∑n
i=1 xi
λ2 < 0, λ̂ = X̄ is the MLE of λ.
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S3.3 Maximum likelihood estimation - some
comments

1. When finding the MLE, remember that you want to max-

imise the likelihood function. It may be more convenient to

maximise the log likelihood function instead.

2. MLEs may not exist, and if they do, they may not be unique.

3. The likelihood function is NOT the probability distribution

for θ. We assume θ is an unknown constant, not a random

variable. In Bayesian statistics we will consider the parameter

to be random.

4. The MLE has some nice large sample properties, including

consistency, asymptotic normality and other optimality prop-

erties

5. The MLE can be used for non-independent data or non-

identically distributed data as well.

6. Often the MLE cannot be found using calculus techniques

and must be found numerically.

7. The MLE satisfies a useful invariance property. Namely, if

φ = h(θ), where h(θ) is a one-to-one function of θ, then the

MLE of φ is given by φ̂ = h(θ̂). For example, if φ = 1
θ and

θ̂ = X̄ then φ̂ = 1

θ̂
= 1

X̄
.

S3.4 Further examples

Example S3.7 Let X1, X2, . . . , Xn be i.i.d. samples of N(θ, 1).

Find the MLE of θ.
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For each of the Xi

f(xi|θ) =
1√
2π

exp

{
−1

2
(xi − θ)2

}
.

Thus:

L(θ) ∝
n∏
i=1

exp

{
−1

2
(xi − θ)2

}
= exp

{
−1

2

n∑
i=1

(xi − θ)2

}
and

l(θ) = logL(θ) = −1

2

n∑
i=1

(xi − θ)2 + constant.

Hence
dl(θ)

dθ
=

n∑
i=1

(xi − θ) = 0

for a stationary point. Hence,

θ̂ =

∑
xi
n

= x̄,

which is verified as a maximum since

d2l(θ)

dθ2
= −n < 0.

Example S3.8 Let X1, X2, . . . , Xn be i.i.d. samples of U [0, θ].

Find the MLE of θ.

If Xi ∼ U [0, θ], then its p.d.f. is given by

f(x|θ) =

{
1
θ if 0 ≤ x ≤ θ

0 otherwise
.

Therefore, if 0 ≤ xi ≤ θ for all i = 1, . . . , n, then

L(θ) =
n∏
i=1

f(xi|θ) =
n∏
i=1

1

θ
=

1

θn
.
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Hence, L(θ) is a decreasing function of θ and its maximum

must exist at the smallest value that θ can obtain. Since θ >

max{x1, x2, . . . , xn}, the MLE of θ is θ̂ = max{x1, x2, . . . , xn}.
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S4 Additional properties of estimators

S4.1 Sufficiency

Definition Let X = (X1, X2, . . . , Xn). A statistic T (X) = T

is sufficient for θ if the conditional distribution of X|T does

not depend on θ, i.e.

f(x1, x2, . . . , xn|T = t, θ) = u(x|t),

where u is a function of x only. Thus, T contains all the

information about θ.

Example S4.1 Suppose X1, X2, . . . , Xn are i.i.d. random

variables from a Poisson distribution with parameter λ. De-

termine whether X̄ is a sufficient statistic for λ.

We need to show p(x1, x2, . . . , xn|T = t, λ) does not depend

on λ.

p(x1, . . . , xn|T = t, λ) =
P (X1 = x1, . . . , Xn = xn, X̄ = t)

P (X̄ = t)
(1)

=
P (X1 = x1, . . . , Xn = xn,

∑n
i=1Xi = nt)

P (
∑n

i=1Xi = nt)

Consider the denominator of (1). Recall X1, . . . , Xn ∼ i.i.d. Poi(λ),

therefore
∑n

i=1Xi ∼ Poi(nλ). Consequently,

P

(
n∑
i=1

Xi = nt

)
=
e−nλ(nλ)nt

(nt)!
. (2)

Now consider the numerator of (1). Since
∑n

i=1Xi = nt and

X1 = x1, . . . , Xn = xn, then
∑n

i=1 xi = x1 + · · · + xn = nt

17



and xn = nt−
∑n−1

i=1 xi. Therefore,

P

(
X1 = x1, . . . , Xn = xn,

n∑
i=1

Xi = nt

)

= P

(
X1 = x1, . . . , Xn−1 = xn−1, Xn = nt−

n−1∑
i=1

xi

)

=

(
n−1∏
i=1

P (Xi = xi)

)
P

(
Xn = nt−

n−1∑
i=1

xi

)

=

(
n−1∏
i=1

e−λλxi

xi!

)
e−λλ(nt−

∑n−1
i=1 xi)(

nt−
∑n−1

i=1 xi

)
!

=
e−(n−1)λλ(

∑n−1
i=1 xi)∏n−1

i=1 xi!

e−λλ(nt−
∑n−1
i=1 xi)(

nt−
∑n−1

i=1 xi

)
!

=
e−nλλ(nt)(

nt−
∑n−1

i=1 xi

)
!
∏n−1

i=1 xi!
(3)

since X1, . . . , Xn are independent.

Substituting (2) and (3) back into (1), we obtain

p(x1, . . . , xn|T = t, λ) =

e−nλλ(nt)

(nt−
∑n−1
i=1 xi)!

∏n−1
i=1 xi!

e−nλ(nλ)nt

(nt)!

=
(nt)!

n(nt)
(
nt−

∑n−1
i=1 xi

)
!
∏n−1

i=1 xi!

which does not involve λ. Therefore, we have shown that X̄

is a sufficient statistic for λ.

Theorem Neyman-Fisher factorisation criterion.

The statistic T (X) is sufficient for θ if and only if one can

factor the likelihood function such that

L(θ) = h(x)g(t, θ),
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where h(x) does not depend on θ (whenever L(θ) > 0) and g

is some non-negative function of t and θ.

Alternatively, the log-likelihood must be expressible in the form:

l(θ) = H(x) +G(T (x), θ).

Example S4.2 Let X1, X2, . . . , Xn be a random sample from

N(θ, 1). Show that X̄ is sufficient for θ.

Consider

L(θ) = f(x1, x2, . . . , xn|θ) =
n∏
i=1

1

(2π)1/2
e−

1
2 (xi−θ)2

=
1

(2π)n/2
e−

1
2

∑n
i=1(xi−θ)2

= (2π)−n/2e−
1
2

∑n
i=1(x2i−2θxi+θ

2)

= (2π)−n/2e−
1
2(
∑n
i=1 x

2
i−2θ

∑n
i=1 xi+nθ

2)

= (2π)−n/2e−
1
2(
∑n
i=1 x

2
i )e−

1
2(−2θnx̄+nθ2).

Therefore, letting h(x) = (2π)−n/2e−
1
2(
∑n
i=1 x

2
i ) and g(X̄, θ) =

e−
1
2(−2θnx̄+nθ2) we can factor the likelihood function. So, by

the Neyman-Fisher factorisation criterion, X̄ is a sufficient

statistic for θ.

Example S4.3 Let X1, X2, . . . , Xn be i.i.d. random variables

from a Poisson distribution with parameter λ. Show that X̄ is a

sufficient statistic for λ using the Neyman-Fisher factorisation

criterion.

Consider

L(λ) = f(x1, x2, . . . , xn|λ) =
n∏
i=1

e−λλxi

xi!

=
e−nλλ

∑n
i=1 xi∏n

i=1 xi!
=

1∏n
i=1 xi!

e−nλλnx̄.

19



If we let h(x) = 1∏n
i=1 xi!

and g(X̄, θ) = e−nλλnx̄, then we have

been able to factor the likelihood function according to the

criterion. So, X̄ must be a sufficient statistic of λ.

Notes

1. One prefers to use a sufficient statistic as an estimator for θ

since the sufficient statistic uses all of the sample information

to estimate θ.

2. Sufficient statistics always exist, since T (X) = (X1, X2, . . . , Xn)

is itself a sufficient statistic. However, we would prefer a statis-

tic that has as low a dimension as possible. A sufficient statis-

tic with the lowest possible dimensionality is called a minimal

sufficient statistic.

3. The MLE, if it exists, will always be a function of a sufficient

statistic.

S4.2 Minimum variance estimators

Does there exist a best estimator?

Recall that in our previous discussions on qualities of estima-

tors we said we would prefer an estimator with as small an

MSE as possible. Unfortunately, if we consider the class of

all estimators for a particular parameter, there does not exist

such an optimality criterion. If we decide to limit ourselves

to particular classes of estimators then there do exist certain

optimality criterion.

Let’s constrain ourselves to the class of unbiased estimators.

Suppose that the random variables and their distributions sat-

isfy the following regularity conditions:

20



1. The range of the random variables does not depend on θ.

(e.g. X ∼ U(0, θ) does not satisfy this condition.

2. The likelihood function is sufficiently smooth to allow us to

interchange the operations of differentiation and integration.

3. The 2nd derivatives of the log-likelihood function exist.

Under the regularity conditions, the Cramér-Rao inequality

states that if T (X) is an unbiased estimator of θ, then

Var(T (X)) ≥ 1

I(θ)
,

where I(θ) = E
[
−d2l(θ)

dθ2

]
.

Definition I(θ) is called the expected information or Fisher’s

information.

Definition 1
I(θ) is called the Cramér-Rao lower bound.

The Cramér-Rao inequality implies that the smallest the vari-

ance of any unbiased estimator can become is 1/I(θ). If any

unbiased estimator T (X) is such that Var(T (X)) = 1/I(θ),

then we say that T (X) is a minimum variance unbiased esti-

mator (MVUE) as no other unbiased estimator will be able to

obtain a smaller variance.

Example S4.4 Suppose X1, X2, . . . , Xn are i.i.d. random

variables from a Poisson distribution with parameter λ. Does

λ̂ = X̄ achieve the Cramér-Rao lower bound?

(i) E[X̄] = 1
n

∑n
i=1E[Xi] = 1

n

∑n
i=1 λ = λ. Therefore X̄ is an

unbiased estimator.

(ii)

L(λ) =
e−nλλ

∑n
i=1 xi∏n

i=1 xi!
.
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This implies,

l(λ) = logL(λ) = −nλ+
n∑
i=1

xi log λ− log

(
n∏
i=1

xi!

)
.

Therefore,

dl(λ)

dλ
= −n+

∑n
i=1 xi
λ

,
d2l(λ)

dλ2
= −

∑n
i=1 xi
λ2

Computing Fisher’s information,

I(λ) = E

[
−d

2l(λ)

dλ2

]
= E

[
−
(
−
∑n

i=1Xi

λ2

)]
=

∑n
i=1E[Xi]

λ2
=
nλ

λ2
=
n

λ
.

Hence, according to the Cramér-Rao inequality, Var(X̄) ≥
1

I(λ) = λ
n .

Now, since Xi ∼ Poi(λ), Var(X̄) = λ
n . Therefore, X̄ is MVUE

for λ.

S4.3 Asymptotic normality of the MLE

Theorem If θ̂ is the MLE of θ, then under certain regularity

conditions it can be shown that

√
n(θ̂ − θ)→ N

(
0,

n

I(θ)

)
as n→∞.

Hence, approximately for sufficiently large sample sizes,

θ̂ ∼ N

(
θ,

1

I(θ)

)
.

Asymptotic properties of the MLE:
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1. θ̂ is asymptotically unbiased.

2. θ̂ is asymptotically fully efficient. (i.e. the variance of θ̂

approaches the Cramér-Rao lower bound: Var(θ̂)→ I(θ)−1 as

n→∞.

3. θ̂ is asymptotically normally distributed.

Although for large n, Var(θ̂) ≈ 1
I(θ) , when θ is unknown then

I(θ) (which is a function of θ) is also unknown. Consequently,

if we need to know the variance we may need to estimate it as

well. To do this it may be convenient to replace the expected

information I(θ) with the observed information

I0(θ̂) = −d
2l(θ)

dθ2

∣∣∣∣
θ=θ̂

.

Although the asymptotic properties of the MLE are quite good,

the properties are true for large samples (i.e. as n → ∞).

The properties do not necessarily hold for small samples and

for any finite sample they are approximations. The quality of

the approximation will depend on the underlying distribution.

S4.4 Invariance property

If φ = g(θ), where g is one-to-one monotonic function of θ,

then φ̂ = g(θ̂) is the MLE of φ for large n

φ̂ ≈ N

(
φ,

[g′(θ)]2

I(θ)

)
,

where g′(θ) = dg
dθ .

Note that for φ̂ = g(θ̂) to be the MLE of φ it is not necessary

for g to be strictly one-to-one. It is sufficient for the range of

g to be an interval.
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Example S4.5

Let X1, X2, . . . , Xn be a random sample from a Poisson distri-

bution with parameter λ. We have shown λ̂ = X̄ is the MLE

of λ.

(a) What is its asymptotic distribution?

(b) Compute P (Xi = 0).

(c) Find the MLE for P (Xi = 0) and its asymptotic distribu-

tion.

(a) According to the previous theorem, since λ̂ is the MLE of

λ, then λ̂ → N
(
λ, 1

I(λ)

)
. We have shown that I(λ) = n

λ ,

therefore, λ̂→ N
(
λ, λn

)
.

(b) P (Xi = 0) = e−λλ0

0! = e−λ.

(c) If p = P (Xi = 0) = e−λ, then since the range of p

is (0,∞), the MLE is p̂ = e−λ̂ = e−X̄ . By the invariance

property

p̂→ N

(
p,

[g′(λ)]2

I(λ)

)
,

where g′(λ) = −e−λ. Therefore p̂ → N
(
p, e

−2λ

n/λ

)
. Writing it

now in terms of the parameter p, if p = e−λ, then λ = − log(p)

and

p̂→ N

(
p,
−p2 log(p)

n

)
as n→∞.
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S5 Interval estimation

S5.1 Confidence intervals

If we are interested in estimating a given parameter θ we can

find some estimator T (X) using some appropriate method, i.e.

Method of Moments, Maximum Likelihood or Least Squares.

T (X) is called a point estimator since the estimate of θ that

we report is one particular point in the parameter space.

For example, when we are interested in estimating the percent-

age of UK residents who are in favour of the Government’s

policies, we can collect a random sample of UK residents and

compute the sample proportion of the people in favour of the

policies. We then report that the Government has, say, a 54%

approval rating.

The difficulty that arises, though, is what does 54% mean?

How exact is our estimate? The point estimator does not

give us that information. Instead it is helpful to also include

information about the variability of the estimate given, and

that will depend both upon the true underlying variance of the

population and the sampling distribution of the estimator that

we use.

We have 2 options:

1. Report the value of the estimate and the standard deviation

of the estimate, which is often called the standard error of the

estimate. For example, the Government has a 54% approval

rating with a 2% standard error.

2. Construct an interval estimate for the parameter which

incorporates both information about the point estimate, its

standard error, and the sampling distribution of the estimator.
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For example, a 95% confidence interval for the Government’s

approval rating is 52.4% to 55.6%.

Definition A 100(1−α)% confidence interval for the parame-

ter θ is an interval constructed from a random sample such that

if we were to repeat the experiment a large number of times

the interval would contain the true value of θ in 100(1− α)%

of the cases.

Note that the interval will depend on the value of the estimate

and the sampling distribution of the estimator.

Example S5.1 Suppose X1, X2, . . . , Xn is a random sample

from a normal distribution with mean θ and known variance

σ2
0. Construct a 100(1− α)% confidence interval for θ.

First, we need a point estimator for θ, the mean of the normal

distribution. Let θ̂ = x̄, the sample mean.

Next we need to determine the sampling distribution of the

estimator θ̂. Since X1, X2, . . . , Xn is a random sample from a

normal distribution, then θ̂ = x̄ ∼ N
(
θ, σ

2
0

n

)
.

We want to find endpoints θ̂1 and θ̂2 such that

P (θ̂1 ≤ θ ≤ θ̂2) = 1− α.

Note that θ̂1 and θ̂2 are random values which are determined

by the random sample.

Note that there exist an infinite number of 100(1− α)% con-

fidence intervals for θ. We would like to chose the one that is

“best”, i.e. the one for which the length of the interval θ̂2− θ̂1

is the shortest, which will in general be the interval which is

symmetric around θ if the distribution of θ̂ is symmetric.
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Since θ̂ = x̄ ∼ N
(
θ, σ

2
0

n

)
, if we standardise, then we get

P

(
−zα/2 ≤

x̄− θ
σ0/
√
n
≤ zα/2

)
= 1− α.

Solving for θ we get,

P

(
−zα/2

σ0√
n
≤ x̄− θ ≤ zα/2

σ0√
n

)
= 1− α

P

(
−x̄− zα/2

σ0√
n
≤ −θ ≤ −x̄+ zα/2

σ0√
n

)
= 1− α

P

(
x̄− zα/2

σ0√
n
≤ θ ≤ x̄+ zα/2

σ0√
n

)
= 1− α

Therefore, a 100(1−α)% confidence interval for θ, where θ is

the mean of a normal distribution with known variance σ2
0 is(

x̄− zα/2
σ0√
n
, x̄+ zα/2

σ0√
n

)
.

Example S5.2 Now suppose X1, X2, . . . , Xn is a random sam-

ple from a normal distribution with mean θ and unknown vari-

ance σ2. Construct a 100(1 − α)% confidence interval for

θ.

Again we use θ̂ = x̄, since x̄ is the MVUE of θ. We know that

x̄ ∼ N
(
θ, σ

2

n

)
, so

x̄− θ
σ/
√
n
∼ N(0, 1),

but now the variance σ2 is unknown. Hence if we want to find

the confidence interval for θ, we need to estimate σ2.

Recall x̄−θ
s/
√
n
∼ tn−1. Therefore

P

(
−tn−1,α/2 ≤

x̄− θ
s/
√
n
≤ tn−1,α/2

)
= 1− α.
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Isolating θ we get,

P

(
x̄− tn−1,α/2

s√
n
≤ θ ≤ x̄+ tn−1,α/2

s√
n

)
= 1− α.

Therefore a 100(1 − α)% confidence interval for θ, where θ

is the mean of the normal distribution with unknown variance

σ2, is given by

x̄± tn−1,α/2
s√
n
.

S5.2 Asymptotic distribution of the MLE

Suppose θ̂ is the MLE of θ, then we know that θ̂ → N
(
θ, 1

I(θ)

)
as n → ∞. Consequently we can construct an approximate

100(1−α)% confidence interval for θ. Since θ is unknown we

will also need to approximate 1
I(θ) with the observed informa-

tion

I0(θ̂) = E

(
−d

2l(θ)

dθ2

) ∣∣∣∣
θ=θ̂

.

Consequently,

P

−zα/2 ≤ θ̂ − θ√
1

I0(θ̂)

≤ zα/2

 = 1− α,

and an approximate 100(1 − α)% confidence interval for θ is

given by

θ̂ ± zα/2

√
1

I0(θ̂)
.

This method is extremely useful since it is often quite straight-

forward to evaluate the MLE and the observed information.

Nonetheless it is an approximation, and should only be trusted
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for large values of n (though the quality of the approximation

will vary from model to model).

Example S5.3 Consider Y1, Y2, . . . , Yn ∼ Exp(θ−1) indepen-

dently. Construct an approximate 95% confidence interval for

θ.

For each of the Yi (yi > 0),

f(yi|θ) = θ−1e−yi/θ.

Thus

L(θ) = θ−ne−
∑n
i=1 yi/θ ⇒ l(θ) = −n log θ −

n∑
i=1

yi
θ

and

θ̂ =
n∑
i=1

yi
n

= ȳ.

Now,
d2l(θ)

dθ2
=
n

θ2
− 2

∑n
i=1 yi
θ3

so that

I0(θ̂) = −
(
n

ȳ2
− 2nȳ

ȳ3

)
=

n

ȳ2
.

Hence, an approximate 95% confidence interval for θ is

ȳ ± 1.96×
√
ȳ2

n
.

Example S5.4 Consider Y1, Y2, . . . , Yn ∼ N(θ, 1) indepen-

dently. Construct an approximate 95% confidence interval for

θ.

In example S3.7 we showed that θ̂ = ȳ and

d2l(θ)

dθ2
= −n.
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Hence, I0(θ̂) = n, and a 95% confidence interval for θ is

ȳ ± 1.96×
√

1

n
.
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S6 Hypothesis testing

S6.1 Null and alternative hypotheses

In estimation, we are interested in asking ourselves the question

what is the value of some particular parameter of interest in the

population. For example, what is the average annual income

of residents in the UK?

Often there are times in statistics when we are not interested

in the specific value of the parameter, but rather are interested

in asserting some statement about the parameter of interest.

Some examples:

1. We want to claim that the average annual income of UK

residents is more than £35, 000.

2. We want to assess whether the average annual income of

men in academia in the UK is the same as that of women at

similar ranks.

3. We want to determine whether the number of cars crossing

a certain intersection follows a Poisson distribution or whether

it is more likely to come from a normal distribution.

To perform a statistical hypothesis test, one needs to specify

two disjoint hypotheses in terms of the parameters of the dis-

tribution that are of interest. They are

H0 : Null Hypothesis,

H1 : Alternative Hypothesis.

Traditionally, we choose H0 to be the hypothesis claiming

equality and H1 to be the claim that we would like to assert,

unless we want to claim equality. Let’s return to our examples:
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1. We want to claim that the average annual income of UK

residents is more than £35, 000. We test

H0 : µ ≤ 35, 000 vs. H1 : µ > 35, 000.

2. We want to assess whether the average annual income of

men in academia in the UK is the same as that of women at

similar ranks. We test

H0 : µmen = µwomen vs. H1 : µmen 6= µwomen.

3. We want to determine whether the number of cars crossing

a certain intersection follows a Poisson distribution or whether

it is more likely to come from a normal distribution. We test

H0 : X ∼ Poisson(2) vs. H1 : X ∼ Normal(2, 2).

Hypotheses where the distribution is completely specified are

called simple hypotheses. For example, H0 and H1 in example

3 and H0 in example 2 are all simple hypotheses.

Hypotheses where the distribution is not completely specified

are called composite hypotheses. For example, H0 and H1 in

example 1 and H1 in example 2 are all composite hypotheses.

The conclusion of a hypothesis test

We will reject H0 if there is sufficient information from our

sample that indicates that the null hypothesis cannot be true,

i.e. the alternative hypothesis is true.

We will not reject H0 if there is not sufficient sample infor-

mation to refute our claim.

S6.2 Type I and Type II errors
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Truth
Decision

H0 True H1 True

Reject H0 Type I error Correct

Do Not Reject H0 Correct Type II error

Definition The significance level or size of the test is

α = P (Type I error)

= P (Reject H0|H0 true).

Typical choices for α are 0.01, 0.05 and 0.10.

Definition The probability of a Type II error is

β = P (Type II error)

= P (Do Not Reject H0|H1 true).

Notes

1. It can be shown that there is an inverse relationship be-

tween α and β i.e. as α increases, β decreases and vice versa.

Therefore for any fixed sample size one can only choose to

control one of the types of error, so we choose to control Type

I error and select our hypotheses initially so the “worse” error

is the Type I error.

2. The value of both α and β depend on the value of the

underlying parameters. Consequently, we can control α by

choosing H0 to include equality of the parameter and can show

that the largest the Type I error can become is at the point

of equality and so choose that to be the size. In example 1

above, for example,

α = P (rejecting H0|µ = 35, 000)

≥ P (rejecting H0|µ ≤ 35, 000).
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Therefore H0 : µ ≤ 35, 000 is often just written as H0 : µ =

35, 000.

3. Because H0 contains the equality, H1 is usually a composite

hypotheses. Therefore β = P (Type II error) is a function of

the parameter within the alternative parameter space.

Definition The power of the test is

1− β = 1− P (Type II error)

= P (Reject H0|H1 true).

The power can be thought of as the probability of making a

correct decision.

S6.3 Tests for means, σ known

Test 1 H0 : µ = µ0 vs. H1 : µ < µ0; σ2 known

We assume either

(i) X1, X2, . . . , Xn are a random sample from a normal distri-

bution with known variance σ2, or

(ii) The sample size n is sufficiently large so that we can as-

sume X̄ is approximately normally distributed by the Central

Limit Theorem and that either the variance is known or the

sample variance s2 ≈ σ2.

Step 1: Choose a test statistic based upon the random sample

for the parameter we want to base our claim on. For example,

we are interested in µ so we want to choose a good estimator

of µ as our test statistic. i.e. µ̂ = X̄.

Step 2: Specify a decision rule. For example, we want to

claim µ < µ0. Therefore, our decision rule is to reject H0 if

X̄ < c, where c is called the cut-off value for the test.
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Step 3: Based upon the sampling distribution of the test

statistic and the specified significance level of the test, solve

for the specific value of the cut-off value c. To find c,

α = P (Type I error) = P (Reject H0|H0 true)

= P (X̄ < c|µ = µ0)

= P

(
X̄ < c|X̄ ∼ N

(
µ0,

σ2

n

))
= P

(
X̄ − µ0

σ/
√
n
<
c− µ0

σ/
√
n

)
= P

(
Z <

c− µ0

σ/
√
n

)
.

Since P (Z < −zα) = α, where zα is found in Neave’s Tables,

then

−zα =
c− µ0

σ/
√
n

and c = µ0 − zα σ√
n

.

So, the decision rule is to reject H0 if X̄ < µ0 − zα σ√
n

or,

equivalently,

Z =
X̄ − µ0

σ/
√
n
< −zα.

Test 2 Test H0 : µ = µ0 vs. H1 : µ > µ0; σ2 known

This is similar to the previous test, except the decision rule

is to reject H0 if X̄ > µ0 + zα
σ√
n

or, equivalently,

Z =
X̄ − µ0

σ/
√
n
> zα.

Note that both these tests are called one-sided tests, since the

rejection region falls on only one side of the outcome space.

Test 3 Test H0 : µ = µ0 vs. H1 : µ 6= µ0; σ2 known
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The decision rule is now to reject H0 if X̄ < µ0 − zα/2 σ√
n

or

X̄ > µ0 + zα/2
σ√
n

or, equivalently,

|Z| =
∣∣∣∣X̄ − µ0

σ/
√
n

∣∣∣∣ > zα/2.

This is called a two-sided test because the decision rule parti-

tions the outcome space into two disjoint intervals.

Example S6.1 Suppose a coffee machine is designed to dis-

pense 6 ounces of coffee per cup with a (known) σ = 0.2

(where we assume the amount of coffee dispensed is normally

distributed). A random sample of n = 20 cups gives x̄ = 5.94.

Test whether the machine is correctly filling the cups.

We test H0 : µ = 6.0 vs. H1 : µ 6= 6.0 at α = 0.05.

The decision rule is to reject H0 if |Z| =
∣∣∣ x̄−6.0

0.2/
√

20

∣∣∣ > z0.05/2 =

z0.025 = 1.96. Now

|Z| =
∣∣∣∣5.94− 6.0

0.2/
√

20

∣∣∣∣ = | − 1.34| < 1.96.

Therefore, we conclude that there is not enough statistical

evidence to reject H0 at α = 0.05.

S6.4 p values

When our sample information determines a particular conclu-

sion to our hypothesis test, we report that we either reject or

do not reject H0 at a particular significance level α.

For example, we would have reached the same decision in Ex-

ample S6.1 whether |Z| = 1.34 or |Z| = 1.95. Whereas,

if we had chosen α = 0.10, we would have rejected H0 if
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|Z| = 1.95 > z0.10/2 = 1.6449, but we would not reject H0 if

|Z| = 1.34 < z0.10/2 = 1.6449.

Hence when we report our conclusion the reader doesn’t know

how sensitive our decision is to the choice of α.

Note that the choice of α should be made before the test is

performed; otherwise, we run the risk of inducing experimenter

bias!

Definition The p value of a test is the probability of rejecting

H0 with the value of the test statistic obtained from the data

given H0 is true.

If we report the conclusion of the test, as well as the p value

then the reader can decide how sensitive our result was to our

choice of α.

Example S6.2 Compute the p value for the test in Example

S6.1.

In the coffee cup example above we were given x̄ = 5.94,

n = 20 and σ = 0.2. Our decision rule was to reject H0 if

|Z| =
∣∣∣ x̄−6.0

0.2/
√

20

∣∣∣ > z0.025.

To compute the p-value for the test we want to find,

P

(
|Z| >

∣∣∣∣5.94− 6.0

0.2/
√

20

∣∣∣∣) = 2P (Z > 1.34)

= 2× 0.0901

= 0.1802.

Notes

1. We multiplied the probability by 2 since we are computing
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the p value for a two-sided test, where there is an equal-sized

rejection region at both tails of the distribution. For a one-

tailed test we only need to compute the probability of rejecting

in one direction.

2. The p value implies that if we had chosen an α of at least

0.1802 then we would have been able to reject H0.

3. In applied statistics, the p value is interpreted as the sample

providing:
strong evidence against H0 if p ≤ 0.01,

evidence against H0 if p ≤ 0.05,

slight evidence against H0 if p ≤ 0.10,

no evidence against H0 if p > 0.10.

S6.5 Tests concerning normal means (σ un-
known)

Assume X1, X2, . . . , Xn is a random sample from a normal

distribution with unknown variance σ2.

Test 4 H0 : µ = µ0 vs. H1 : µ < µ0; σ2 unknown

The decision rule is to reject H0 if X̄ < c. As before,

α = P (Type I error) = P (Reject H0|H0 true)

= P (X̄ < c|µ = µ0)

= P

(
X̄ < c|X̄ ∼ N

(
µ0,

σ2

n

))
,

but recall σ2 is unknown. Therefore, we will need to estimate

it using s2. Now,
X̄ − µ0

s/
√
n
∼ tn−1.
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Hence,

α = P (X̄ < c|µ = µ0) = P

(
X̄ − µ0

s/
√
n

<
c− µ0

s/
√
n

)
= P

(
T <

c− µ0

s/
√
n

)
.

Now, P (T < −tn−1,α) = α, where tn−1,α is found in Neave’s

Tables, so

−tn−1,α =
c− µ0

s/
√
n

and c = µ0 − tn−1,α
s√
n

.

Therefore, the decision rule is to reject H0 if X̄ < µ0 −
tn−1,α

s√
n

or, equivalently,

T =
X̄ − µ0

s/
√
n

< −tn−1,α.

Test 5 H0 : µ = µ0 vs. H1 : µ > µ0; σ2 unknown

This is similar to the previous test, except the decision rule

is to reject H0 if X̄ > µ0 + tn−1,α
s√
n

or, equivalently,

T =
X̄ − µ0

s/
√
n

> tn−1,α.

Test 6 H0 : µ = µ0 vs. H1 : µ 6= µ0; σ2 unknown

The decision rule is now to reject H0 if

|T | =
∣∣∣∣X̄ − µ0

s/
√
n

∣∣∣∣ > tn−1,α/2.

Example S6.3 Suppose that σ is unknown in Example S6.1.

(We still assume the amount of coffee dispensed is normally
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distributed). A random sample of n = 20 cups gives x̄ = 5.94

and s2 = 0.15012. Test whether the machine is correctly filling

the cups.

We test H0 : µ = 6.0 vs. H1 : µ 6= 6.0 at α = 0.05.

The decision rule is to reject H0 if |T | =
∣∣∣ x̄−6.0

0.1501/
√

20

∣∣∣ > t20−1,0.05/2 =

t19,0.025 = 2.093.

Now

|T | =
∣∣∣∣ 5.94− 6.0

0.1501/
√

20

∣∣∣∣ = | − 1.7876| < 2.093.

Therefore, we do not reject H0 at α = 0.05. The p value is

p = 2P (t19 > | − 1.7876|) ≈ 2× 0.05 = 0.10.

S6.6 Confidence intervals and two-sided tests

Consider the two-sided t-test of size α. We reject H0 if |T | =∣∣∣X̄−µ0

s/
√
n

∣∣∣ > tn−1,α/2. This implies we do not reject H0 if

|T | =
∣∣∣∣X̄ − µ0

s/
√
n

∣∣∣∣ ≤ tn−1,α/2

⇔ −tn−1,α/2
s√
n
≤ X̄ − µ0 ≤ tn−1,α/2

s√
n

⇔ X̄ − tn−1,α/2
s√
n
≤ µ0 ≤ X̄ + tn−1,α/2

s√
n
.

But (
X̄ − tn−1,α/2

s√
n
, X̄ + tn−1,α/2

s√
n

)
is a 100(1−α)% confidence interval for µ. Consequently, if µ0,

the value of µ under H0, falls within the 100(1 − α)% confi-

dence interval for µ, then we will not reject H0 at significance

level α.
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In general, therefore, there is a correspondence between the

“acceptance region” of a statistical test of size α and the

related 100(1 − α)% confidence interval. Therefore, we will

not reject H0 : θ = θ0 vs. H1 : θ 6= θ0 at level α if and only

if θ0 lies within the 100(1− α)% confidence interval for θ.

Example S6.4: For the coffee machine in Example S6.3 we

wanted to test H0 : µ = 6.0 vs. H1 : µ 6= 6.0 at α = 0.05.

We were given a random sample of n = 20 cups with x̄ = 5.94

and s2 = 0.15012. Construct a 95% confidence interval for µ.

The limits of a 95% confidence interval for µ are

x̄± tn−1,α/2
s√
n

= 5.94± t20−1,0.05/2
0.1501√

20

= 5.94± 2.093
0.1501√

20

so the 95% confidence interval for µ is

(5.8698, 6.0102).

If we use the confidence interval to perform our test, we see

that

µ0 = 6.0 ∈ (5.8698, 6.0102),

so we will not reject H0 at α = 0.05.

S6.7 Other types of tests

Test 7 H0 : σ2
1 = σ2

2 vs. H1 : σ2
1 6= σ2

2

Let X1, X2, . . . , Xm ∼ N(µ1, σ
2
1) and Y1, Y2, . . . , Yn ∼ N(µ2, σ

2
2)

be two independent random samples from normal populations.
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The test statistic is F = s21
s22

, where

s2
1 =

1

m− 1

m∑
i=1

(Xi − X̄)2

s2
2 =

1

n− 1

n∑
i−1

(Yi − Ȳ )2.

Recall that

(m− 1)
s2

1

σ2
1

∼ χ2
m−1,

(n− 1)
s2

2

σ2
2

∼ χ2
n−1.

Note that s2
1 and s2

2 are independent since the samples are

independent. Therefore,

F =
s2

1/σ
2
1

s2
2/σ

2
2

∼
χ2
m−1/(m− 1)

χ2
n−1/(n− 1)

∼ Fm−1,n−1.

Under H0 : σ2
1 = σ2

2, therefore

F =
s2

1

s2
2

∼ Fm−1,n−1.

The decision rule is to reject H0 if

F =
s2

1

s2
2

< Fm−1,n−1,α/2

or if

F =
s2

1

s2
2

> Fm−1,n−1,1−α/2.

When using Neave’s Tables it may be helpful to remember that

Fν1,ν2,q =
1

Fν2,ν1,1−q
.
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Test 8 H0 : µ1 = µ2 vs. H1 : µ1 6= µ2; σ2 unknown

Assume X1, X2, . . . , Xm ∼ N(µ1, σ
2) and

Y1, Y2, . . . , Yn ∼ N(µ2, σ
2) are two independent random sam-

ples with unknown (common) variance σ2.

The decision rule is to reject H0 if

|T | =

∣∣∣∣∣∣∣
X̄ − Ȳ√
s2
p

(
1
m + 1

n

)
∣∣∣∣∣∣∣ > tm+n−2,α/2,

where s2
p =

(m−1)s2X+(n−1)s2Y
m+n−2 is the pooled sample variance.

Note that

1. (X̄ − Ȳ ) ∼ N
(
(µ1 − µ2), σ

2
(

1
m + 1

n

))
which implies

(X̄ − Ȳ )− (µ1 − µ2)√
σ2
(

1
m + 1

n

) ∼ N(0, 1).

2. (m+ n− 2)
s2p
σ2 ∼ χ2

m+n−2

3. s2
p is independent of X̄ − Ȳ .

Therefore,

(X̄−Ȳ )−(µ1−µ2)√
σ2( 1

m+ 1
n)√

(m+n−2)s2p
(m+n−2)σ2

=
(X̄ − Ȳ )− (µ1 − µ2)√

s2
p

(
1
m + 1

n

) ∼ tm+n−2.

Under H0, µ1 − µ2 = 0, hence

T =
X̄ − Ȳ√
s2
p

(
1
m + 1

n

) ∼ tm+n−2.

43



Example S6.5 Suppose one wants to test whether the time it

takes to get from a blood bank to a hospital via two different

routes is the same on average. Independent random samples

are selected from each of the different routes and we obtain

the following information:

Route X: m = 10 x̄ = 34 s2
1 = 17.111

Route Y : n = 12 ȳ = 30 s2
2 = 9.454

Test H0 : µ1 = µ2 vs. H1 : µ1 6= µ2 at level α = 0.05.

To perform the t-test we need the variances to be equal, so

we test H0 : σ2
1 = σ2

2 vs. H1 : σ2
1 6= σ2

2 at level α = 0.05.

The decision rule is to reject H0 if F = s21
s22
< Fm−1,n−1,α/2 or

if F = s21
s22
> Fm−1,n−1,1−α/2.

Computing F = s21
s22

= 17.111
9.454 = 1.81.

F9,11,.025 = 1
F11,9,.975

= 1
3.915 = 0.255 and F9,11,.975 = 3.59.

Hence F9,11,.025 < F < F9,11,.975, so we do not reject H0 at

α = 0.05. Therefore we can assume the variances from the

two samples are the same.

Now we test H0 : µ1 = µ2 vs. H1 : µ1 6= µ2 at level α = 0.05

The decision rule is to reject H0 if

|T | =

∣∣∣∣∣∣∣
X̄ − Ȳ√
s2
p

(
1
m + 1

n

)
∣∣∣∣∣∣∣ > tm+n−2,α/2.

44



Computing, s2
p = 9×17.111+11×9.454

10+12−2 = 12.9 so

T =

∣∣∣∣∣∣∣
34− 30√

12.9
(

1
10 + 1

12

)
∣∣∣∣∣∣∣ = 2.6 > t20,.025 = 2.086.

Therefore we reject H0 that the journey times are the same

on average at α = 0.05. The p value is P (|T | > 2.6) =

2P (T20 > 2.6) ≈ 2× .009 = 0.018.

Test 9 H0 : µ1 = µ2 vs. H1 : µ1 6= µ2; non-independent

samples

Suppose we have two groups of observations X1, X2, . . . , Xn

and Y1, Y2, . . . , Yn where there is an obvious pairing between

the observations (e.g. before and after studies, different mea-

suring devices, etc.) Note that the samples are no longer

independent.

An equivalent set of hypotheses is H0 : µd = µ1 − µ2 = 0 vs.

H1 : µd = µ1 − µ2 6= 0.

Let Di = Xi−Yi for i = 1, . . . , n and assume D1, D2, . . . , Dn ∼
i.i.d. N(µd, σ

2
d).

The decision rule is to reject H0 if∣∣∣∣ D̄

sd/
√
n

∣∣∣∣ > tn−1,α/2.

Example S6.6 In a medical study of patients given a drug

and a placebo, sixteen patients were paired up with members

of each pair having similar age and being the same sex. One

of each pair received the drug and the other the placebo. The

response score for each patient was found.
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Pair number 1 2 3 4 5 6 7 8

Given drug 0.16 0.97 1.57 0.55 0.62 1.12 0.68 1.69

Given placebo 0.11 0.13 0.77 1.19 0.46 0.41 0.40 1.28

Are the responses for the drug and placebo significantly differ-

ent?

This is a ‘matched-pair’ problem, since we expect a relation

between the values of each pair. The difference within each

pair is

Pair number 1 2 3 4 5 6 7 8

di = yi − xi 0.05 0.84 0.80 -0.64 0.16 0.71 0.28 0.41

We consider the di’s to be a random sample from N(µd, σ
2
d).

Now d̄ = 0.326, s2
d = 0.241 so sd = 0.490.

We test H0 : µd = 0 vs H1 : µd 6= 0. and reject H0 if∣∣∣∣ d̄

sd/
√
n

∣∣∣∣ = 1.88 > tn−1,α/2.

Now, t7,0.05 = 1.89, so we would not reject H0 at the 10%

level (just).
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S7 Bayesian Inference

S7.1 What is Bayesian inference?

Classical (frequentist) approach With this approach, we

assume that f(x|θ) = f(x1, x2, . . . , xn|θ) is the likelihood

function of the random sample X1, X2, . . . , Xn where θ is an

unknown but fixed parameter for the distribution which gener-

ated the random sample. The parameter, θ, is always assumed

to be a constant which we want to estimate or test hypotheses

about.

The underlying assumption for the interpretation of our re-

sults comes from the frequency interpretation of probability,

i.e. probability is the relative frequency that our desired result

occurs in repeated trials.

Bayesian approach With this approach, we assume θ is a ran-

dom variable for which we can assign a probability distribution

based on previous knowledge or beliefs.

Therefore, probability is interpreted as reflecting a degree of

reasonable belief.

The two approaches use different techniques and terminology:

Classical approach Bayesian approach

maximum likelihood prior distribution

method of moments posterior distribution

sampling dist. of θ̂ risk (loss) function

unbiasedness, etc. expected loss

confidence intervals

type I and II errors
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S7.2 The Bayesian approach to inference

Let f(x|θ) = f(x1, x2, . . . , xn|θ) be the p.d.f. or p.m.f. of

some distribution with unknown parameter θ. Based on a

random sample of observations X1, X2, . . . , Xn from this dis-

tribution, we want to determine where θ lies in the parameter

space, Ω.

The key steps to the Bayesian approach are:

1. Specify the likelihood model f(x1, x2, . . . , xn|θ) for the ran-

dom sample.

2. Determine a prior distribution f(θ) for the unknown param-

eter θ.

3. Calculate the posterior distribution of θ using Bayes’ The-

orem.

4. Draw inferences based on the posterior distribution.

The choice of likelihood model is similar to the frequentist

approach. We can base the choice of likelihood on the model

which produces the data (e.g. Bernoulli, Binomial, Poisson)

or some “common knowledge” or previous work.

S7.3 The prior distribution

Before any observations are collected, the experimenter assigns

a probability distribution to θ, f(θ), called the prior distribution

of θ. The distribution is based upon previous knowledge and

beliefs as to the relative likelihood that the true value of θ lies

within each region of the parameter space Ω.

Note that a prior distribution, f(θ), is a probability distribution

so it will have all the properties of a probability distribution.

For example, let p be the probability of obtaining a head when
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tossing a coin. Then Ω = [0, 1], and we might assign

f(p) =


1.9 if 0.45 ≤ p ≤ 0.55

0.9 if 0 ≤ p < 0.45 or 0.55 < p ≤ 1

0 otherwise

Notes

1. Different prior beliefs will lead to a different posterior dis-

tribution. The analysis is subjective and therefore a different

experimenter may draw a different conclusion.

2. In most cases the effect of the prior becomes less influential

as more data becomes avaiable. The choice of prior is less

important if there is enough data.

3. It may be possible to choose a prior which is consistent with

our beliefs but which also makes the mathematics relatively

straightforward.

4. If there is no prior information about a parameter we can

choose a prior distribution which reflects our ignorance about

the parameter.

There are some common choices for prior distributions:

1. Uniform distribution

f(θ) =

{
1
b−a if a ≤ θ ≤ b

0 otherwise

Note that any point in the interval Ω = [a, b] is equally likely

to be a candidate for θ. It is used when the experimenter has

no previous knowledge or belief where θ lies in Ω (and the

parameter lies in an interval of finite length).
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2. Gamma distribution

f(θ) =

{
βα

Γ(α)θ
α−1e−βθ if θ > 0

0 otherwise

Note that E[θ] = α
β and Var(θ) = α

β2 . It is used to model

parameters which are positive. We can choose α and β either

based on assumptions about the mean and variance of θ or to

get the desired functional form.

0 5 10
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0.2

0.4

0.6

0.8

1

θ

f(
θ)

 

 

α=1

α=3
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The figures show the p.d.f. of the gamma distribution with

β = 1, top, and α = 3, bottom.

3. Beta distribution

f(θ) =

{
Γ(α+β)

Γ(α)Γ(β)θ
α−1(1− θ)β−1 if 0 < θ < 1

0 otherwise

Note that E[θ] = α
α+β and

Var(θ) =
αβ

(α + β)2(α + β + 1)
.

It is used to model parameters that take on values only on

(0,1). The choices of α and β may be based upon your knowl-

edge of the mean and variance of θ or your belief on the shape

of the underlying distribution.
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The figures show the p.d.f. of the beta distribution for different

values of α and β.

4. Normal distribution

f(θ) =
1√

2πσ2
e−

(θ−µ)2

2σ2
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if −∞ < θ < ∞. It is used to model parameters that can

take on any real value, but the probability is symmetric about

some point µ and the variance is chosen to reflect how tightly

you would expect the distribution of θ to lie around µ.

S7.4 Bayes’ theorem

Once you have observed the random sample, X1, X2, . . . , Xn,

we want to revise the probability distribution of θ to incorpo-

rate the information you observe about X1, X2, . . . , Xn.

Definition The p.d.f. (p.m.f.) of the posterior distribution of

θ given X1, X2, . . . , Xn, is defined to be

f(θ|X1, X2, . . . , Xn) =
f(x1, x2, . . . , xn, θ)

f(x1, x2, . . . , xn)

=
f(x1, x2, . . . , xn|θ)f(θ)∫

Ω f(x1, x2, . . . , xn|θ)f(θ)dθ
.

Note that:

1. f(θ) is the prior distribution of θ.

2. f(x1, x2, . . . , xn|θ) is the typical likelihood function of

X1, X2, . . . , Xn with θ fixed.

3. f(x1, x2, . . . , xn) =
∫

Ω f(x1, x2, . . . , xn|θ)f(θ)dθ will be a

constant with regard to the p.d.f. of θ. It is referred to as the

normalising constant.

Therefore,

f(θ|X1, X2, . . . , Xn) ∝ f(x1, x2, . . . , xn|θ)f(θ).

Instead of calculating f(θ|X1, X2, . . . , Xn) explicitly, one in-

stead calculates

f(x1, x2, . . . , xn|θ)f(θ).

Often we can specify the normalising constant afterwards, if

needed.
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S7.5 Examples

Example S7.1 X1, . . . , Xn iid N(θ, σ2) where σ2 is known,

and prior θ ∼ N(b, d2).

π(θ|x) ∝ π(x|θ)π(θ)

∝ exp

{
− 1

2σ2

∑
(xi − θ)2

}
× exp

{
− 1

2d2
(θ − b)2

}

∝ exp

{
− 1

2σ2

(
nθ2 − 2θnx̄

)
− 1

2d2

(
θ2 − 2θb

)}
∝ exp

{
−1

2

(
n

σ2
+

1

d2

)[
θ2 − 2θ

(
nx̄
σ2 + b

d2

)(
n
σ2 + 1

d2

)]}

∝ exp

−1

2

(
n

σ2
+

1

d2

)[
θ −

(
nx̄
σ2 + b

d2

)(
n
σ2 + 1

d2

)]2
 ,

and so π(θ|x) ∼ N(B,D2) where

B =

(
nx̄
σ2 + b

d2

)(
n
σ2 + 1

d2

) , D2 =
1

n
σ2 + 1

d2

.

Example S7.2 Suppose we have a two-sided coin. We want

to estimate, θ, the probability of obtaining a head. Based on

our experiences we believe the coin should be fair with a high

degree of certainty. To test our assertion, we flip the coin 10

times and observe the number of heads that results. Estimate

θ using a Bayesian approach.

1. Firstly, we determine the prior distribution of θ. Since

0 < θ < 1, we assume θ ∼ Beta(α, β). Furthermore, if we

assume E[θ] = 1
2 and Var(θ) = 1

16 , then we can solve for α

and β as follows.
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E[θ] =
α

α + β
=

1

2
⇒ 2α = α + β

So α = β. Also,

Var(θ) =
αβ

(α + β)2(α + β + 1)
=

α2

(2α)2(2α + 1)

=
1

4(2α + 1)
=

1

16
.

So 2α + 1 = 4. Hence, α = 3
2 and β = 3

2 .

Consequently,

f(θ) =

{
Γ(3)

Γ(3/2)Γ(3/2)θ
3
2−1(1− θ) 3

2−1 if 0 < θ < 1

0 otherwise

2. Next, we determine the likelihood function for X, the num-

ber of heads observed. X ∼ Bin(10, θ) implies

f(x|θ) =

(
10

x

)
θx(1− θ)10−x

if x = 0, 1, 2, . . . , 10.

3. Now we can calculate the posterior distribution.

f(θ|x) =
f(x|θ)f(θ)∫

Ω f(x|θ)f(θ)dθ
∝ f(x|θ)f(θ)

∝

(
10

x

)
θx(1− θ)10−x Γ(3)

Γ(3/2)Γ(3/2)
θ

3
2−1(1− θ)

3
2−1

∝ θx+ 3
2−1(1− θ)10−x+ 3

2−1

Therefore, f(θ|x) is proportional to a Beta distribution with

α = x+ 3
2 and β = 10− x+ 3

2 , so

f(θ|x) = Cθx+ 3
2−1(1− θ)10−x+ 3

2−1
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if 0 < θ < 1 and 0 otherwise, where

C =
Γ(13)

Γ
(
x+ 3

2

)
Γ
(
10− x+ 3

2

) .
Definition If the prior and posterior distributions belong to

the same family, G, the data have a distribution belonging to

the family H, then we say that G is a family of conjugate

priors to H.

In Example S7.2 we see that Beta is a family of conjugate priors

to Binomial distribution. More families of conjugate priors are

given in the following table:

Data Parameter Prior/Post.

Bernoulli 0 < θ < 1 Beta

(Binomial)

Normal −∞ < θ <∞ Normal

(known var.)

Poisson λ > 0 Gamma

Exponential θ > 0 Gamma

S7.6 Estimation in a Bayesian context

Let θ be the parameter we are interested in estimating. Let a

denote a possible estimate of θ.

In Bayesian statistics, one describes decisions as a set of possi-

ble actions. Estimation is considered to be making a decision

about the value of θ, so each possible value that θ could take

on can be thought of as an action, hence the notation, a.

Definition For each possible value of θ ∈ Ω and each possible

estimate a ∈ Ω, there is a number L(θ, a) which measures the
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loss or cost to the experimenter when the true value of the

parameter is θ and the estimate is a. L(θ, a) is a function of

θ and a is called the loss function.

Note that in Bayesian statistics, since θ is a random variable,

then L(θ, a) is also a random variable.

The idea of estimation in a Bayesian context consists of

1. Choosing a functional form for L(θ, a).

2. Choosing the value of a which minimises E(L(θ, a)|x).

The most common loss function is the squared-error loss func-

tion,

L(θ, a) = (θ − a)2.

Theorem The value of a which minimises E(L(θ, a)|x) with

the squared-error loss function is E(θ|x). Therefore, the Bayes’

estimator of θ is E(θ|x).

Example S7.3 Consider example S7.2. If we observe 8 heads

what is the Bayes’ estimator of θ?

Our estimate of θ was E(θ) = 1
2 before we collected any data.

After collecting our random sample, θ|x ∼ Beta
(
x+ 3

2 , 10− x+ 3
2

)
.

Therefore,

E(θ|x) =
x+ 3/2

x+ 3/2 + 10− x+ 3/2

=
x+ 3/2

13
=

2x+ 3

26
.

If we observe 8 heads, then E(θ|x) = 19
26 = 0.731.

Note that if we wanted to further investigate θ, the probability

of obtaining a head, we could take another sample and

θ|x ∼ Beta

(
8 +

3

2
, 2 +

3

2

)
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would become our prior distribution, and we would then com-

pute the posterior again.

Note that if we choose a different loss function we will get a

potentially different estimate for θ.
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