Teaching methods
- Computer labs
- Lectures
- Seminars
- Tutorials
- Workshops
- Problem classes
University Park Campus, Nottingham, UK
Institute of Physics
The Institute of Physics accredits bachelor and integrated masters degree programmes for the purposes of the professional award of Chartered Physicist. Chartered Physicist requires an IOP accredited degree followed by an appropriate period of experience during which professional skills are acquired.
An accredited integrated masters degree fulfills the academic requirement for Chartered Physicist status.
Institute of Physics
The Institute of Physics accredits bachelor and integrated masters degree programmes for the purposes of the professional award of Chartered Physicist. Chartered Physicist requires an IOP accredited degree followed by an appropriate period of experience during which professional skills are acquired.
An accredited integrated masters degree fulfills the academic requirement for Chartered Physicist status.
(6 in maths - analysis and approaches accepted, applications and interpretations not accepted - plus 6 in physics and 6 in a third subject all at Higher Level)
6.5 (no less than 6.0 in any element)
As well as IELTS (listed above), we also accept other English language qualifications. This includes TOEFL iBT, Pearson PTE, GCSE, IB and O level English. Check our English language policies and equivalencies for further details.
For presessional English or one-year foundation courses, you must take IELTS for UKVI to meet visa regulations.
If you need support to meet the required level, you may be able to attend a Presessional English for Academic Purposes (PEAP) course. Our Centre for English Language Education is accredited by the British Council for the teaching of English in the UK.
If you successfully complete your presessional course to the required level, you can then progress to your degree course. This means that you won't need to retake IELTS or equivalent.
Check our country-specific information for guidance on qualifications from your country.
A*AA-AAA including both maths and physics with at least one of these subjects achieving an A*. For example, A* maths, A physics or A* physics, A maths. Contextual offer goes to AAA. A pass is normally required in science practical tests, if assessed separately.
N/A
We recognise that applicants have a wealth of different experiences and follow a variety of pathways into higher education.
Consequently we treat all applicants with alternative qualifications (besides A-levels and the International Baccalaureate) on an individual basis, and we gladly accept students with a whole range of less conventional qualifications including:
This list is not exhaustive. The entry requirements for alternative qualifications can be quite specific; for example you may need to take certain modules and achieve a specified grade in those modules. Please contact us to discuss the transferability of your qualification. Please see the alternative qualifications page for more information.
We recognise the potential of talented students from all backgrounds. We make contextual offers to students whose personal circumstances may have restricted achievement at school or college. These offers are usually one grade lower than the advertised entry requirements. To qualify for a contextual offer, you must have Home/UK fee status and meet specific criteria – check if you’re eligible.
A*AA-AAA including both maths and physics with at least one of these subjects achieving an A*. For example, A* maths, A physics or A* physics, A maths. Contextual offer goes to AAA.
A pass is normally required in science practical tests, if assessed separately.
If you don't meet our entry requirements there is the option to study the Engineering and Physical Sciences Foundation Programme. There is a course for UK students and one for EU/international students.
At the University of Nottingham, we have a valuable community of mature students and we appreciate their contribution to the wider student population. You can find lots of useful information on the mature students webpage.
We recognise that applicants have a wealth of different experiences and follow a variety of pathways into higher education.
Consequently we treat all applicants with alternative qualifications (besides A-levels and the International Baccalaureate) on an individual basis, and we gladly accept students with a whole range of less conventional qualifications including:
This list is not exhaustive. The entry requirements for alternative qualifications can be quite specific; for example you may need to take certain modules and achieve a specified grade in those modules. Please contact us to discuss the transferability of your qualification. Please see the alternative qualifications page for more information.
We recognise the potential of talented students from all backgrounds. We make contextual offers to students whose personal circumstances may have restricted achievement at school or college. These offers are usually one grade lower than the advertised entry requirements. To qualify for a contextual offer, you must have Home/UK fee status and meet specific criteria – check if you’re eligible.
A*AA-AAA including both maths and physics with at least one of these subjects achieving an A*. For example, A* maths, A physics or A* physics, A maths. Contextual offer goes to AAA.
A pass is normally required in science practical tests, if assessed separately.
If you don't meet our entry requirements there is the option to study the Engineering and Physical Sciences Foundation Programme. There is a course for UK students and one for EU/international students.
At the University of Nottingham, we have a valuable community of mature students and we appreciate their contribution to the wider student population. You can find lots of useful information on the mature students webpage.
International students must have valid UK immigration permissions for any courses or study period where teaching takes place in the UK. Student route visas can be issued for eligible students studying full-time courses. The University of Nottingham does not sponsor a student visa for students studying part-time courses. The Standard Visitor visa route is not appropriate in all cases. Please contact the university’s Visa and Immigration team if you need advice about your visa options.
NA
A*AA-AAA including both maths and physics with at least one of these subjects achieving an A*. For example, A* maths, A physics or A* physics, A maths. Contextual offer goes to AAA. A pass is normally required in science practical tests, if assessed separately.
N/A
(6 in maths - analysis and approaches accepted, applications and interpretations not accepted - plus 6 in physics and 6 in a third subject all at Higher Level)
We recognise that applicants have a wealth of different experiences and follow a variety of pathways into higher education.
Consequently we treat all applicants with alternative qualifications (besides A-levels and the International Baccalaureate) on an individual basis, and we gladly accept students with a whole range of less conventional qualifications including:
This list is not exhaustive. The entry requirements for alternative qualifications can be quite specific; for example you may need to take certain modules and achieve a specified grade in those modules. Please contact us to discuss the transferability of your qualification. Please see the alternative qualifications page for more information.
We recognise the potential of talented students from all backgrounds. We make contextual offers to students whose personal circumstances may have restricted achievement at school or college. These offers are usually one grade lower than the advertised entry requirements. To qualify for a contextual offer, you must have Home/UK fee status and meet specific criteria – check if you’re eligible.
A*AA-AAA including both maths and physics with at least one of these subjects achieving an A*. For example, A* maths, A physics or A* physics, A maths. Contextual offer goes to AAA.
A pass is normally required in science practical tests, if assessed separately.
If you don't meet our entry requirements there is the option to study the Engineering and Physical Sciences Foundation Programme. There is a course for UK students and one for EU/international students.
At the University of Nottingham, we have a valuable community of mature students and we appreciate their contribution to the wider student population. You can find lots of useful information on the mature students webpage.
We recognise that applicants have a wealth of different experiences and follow a variety of pathways into higher education.
Consequently we treat all applicants with alternative qualifications (besides A-levels and the International Baccalaureate) on an individual basis, and we gladly accept students with a whole range of less conventional qualifications including:
This list is not exhaustive. The entry requirements for alternative qualifications can be quite specific; for example you may need to take certain modules and achieve a specified grade in those modules. Please contact us to discuss the transferability of your qualification. Please see the alternative qualifications page for more information.
We recognise the potential of talented students from all backgrounds. We make contextual offers to students whose personal circumstances may have restricted achievement at school or college. These offers are usually one grade lower than the advertised entry requirements. To qualify for a contextual offer, you must have Home/UK fee status and meet specific criteria – check if you’re eligible.
A*AA-AAA including both maths and physics with at least one of these subjects achieving an A*. For example, A* maths, A physics or A* physics, A maths. Contextual offer goes to AAA.
A pass is normally required in science practical tests, if assessed separately.
If you don't meet our entry requirements there is the option to study the Engineering and Physical Sciences Foundation Programme. There is a course for UK students and one for EU/international students.
At the University of Nottingham, we have a valuable community of mature students and we appreciate their contribution to the wider student population. You can find lots of useful information on the mature students webpage.
NA
Internships
You may have the opportunity to undertake a paid summer research internship within the School of Physics and Astronomy.
Our Physics with European Language degree courses give you the opportunity to spend a year studying in a European country and develop proficiency in another language.
Each year students may apply for a limited number of competitive places to spend several months abroad conducting the research for the final year project with one of our international partners. Previous destinations have included China, Brazil, France, and the USA.
Our Physics with a Year in Industry degree courses give you the opportunity to spend a year on placement with an industrial partner. These placements enable you to apply your learning to a practical setting within a physics-related industry.
Study Abroad and the Year in Industry are subject to students meeting minimum academic requirements. Opportunities may change at any time for a number of reasons, including curriculum developments, changes to arrangements with partner universities, travel restrictions or other circumstances outside of the university’s control. Every effort will be made to update information as quickly as possible should a change occur.
Internships
You may have the opportunity to undertake a paid summer research internship within the School of Physics and Astronomy.
Our Physics with European Language degree courses give you the opportunity to spend a year studying in a European country and develop proficiency in another language.
Each year students may apply for a limited number of competitive places to spend several months abroad conducting the research for the final year project with one of our international partners. Previous destinations have included China, Brazil, France, and the USA.
Our Physics with a Year in Industry degree courses give you the opportunity to spend a year on placement with an industrial partner. These placements enable you to apply your learning to a practical setting within a physics-related industry.
Study Abroad and the Year in Industry are subject to students meeting minimum academic requirements. Opportunities may change at any time for a number of reasons, including curriculum developments, changes to arrangements with partner universities, travel restrictions or other circumstances outside of the university’s control. Every effort will be made to update information as quickly as possible should a change occur.
*For full details including fees for part-time students and reduced fees during your time studying abroad or on placement (where applicable), see our fees page.
If you are a student from the EU, EEA or Switzerland, you may be asked to complete a fee status questionnaire and your answers will be assessed using guidance issued by the UK Council for International Student Affairs (UKCISA) .
All students will need at least one device to approve security access requests via Multi-Factor Authentication (MFA). We also recommend students have a suitable laptop to work both on and off-campus. For more information, please check the equipment advice.
As a student on this course, you should factor some additional costs into your budget, alongside your tuition fees and living expenses.
You should be able to access most of the books you’ll need through our libraries, though you may wish to purchase your own copies. If you do these would cost around £40.
Due to our commitment to sustainability, we don’t print lecture notes but these are available digitally. You will be given £5 worth of printer credits a year. You are welcome to buy more credits if you need them. It costs 4p to print one black and white page.
If you study abroad, you need to consider the travel and living costs associated with your country of choice. This may include visa costs and medical insurance.
Personal laptops are not compulsory as we have computer labs that are open 24 hours a day but you may want to consider one if you wish to work at home.
We offer a range of international undergraduate scholarships for high-achieving international scholars who can put their Nottingham degree to great use in their careers.
All students will need at least one device to approve security access requests via Multi-Factor Authentication (MFA). We also recommend students have a suitable laptop to work both on and off-campus. For more information, please check the equipment advice.
As a student on this course, you should factor some additional costs into your budget, alongside your tuition fees and living expenses.
You should be able to access most of the books you’ll need through our libraries, though you may wish to purchase your own copies. If you do these would cost around £40.
If you study abroad, you need to consider the travel and living costs associated with your country of choice. This may include visa costs and medical insurance.
Personal laptops are not compulsory as we have computer labs that are open 24 hours a day but you may want to consider one if you wish to work at home.
Over one third of our UK students receive our means-tested core bursary, worth up to £1,000 a year. Full details can be found on our financial support pages.
* A 'home' student is one who meets certain UK residence criteria. These are the same criteria as apply to eligibility for home funding from Student Finance.
About Physics at the University of Nottingham
We have a proud history of learning and innovation. Research undertaken within the School of Physics and Astronomy, by Professor Sir Peter Mansfield, was recognised with a 2003 Nobel Prize for the invention of Magnetic Resonance Imaging body scanners. This technology has already helped more than half a billion people worldwide. More recently, our use of quantum technologies to understand how the brain works is changing the way that neurological conditions are detected and treated.
Our research activities cover cutting-edge topics ranging from probing quantum mechanics at ultralow temperatures to understanding the largest structures in the Universe.
Our courses offer a wide range of optional modules, so you can explore new areas of physics and specialise in the ones that interest you the most. You can study topics as diverse as cosmology, nanoscience, and medical imaging and learn from experts in those fields. What’s more, there is flexibility to transfer between most physics courses after the first year.
Some of our teaching staff share their love of physics with budding scientists worldwide through the popular Sixty Symbols YouTube channel. Our unique, student centred MSci course offers innovative teaching methods, with few to no exams in the final year.
We encourage students to share their fascination with physics with the wider community through our outreach programme. This programme can help you further develop skills such as organisation, communication and team working. We also have an active student society, PhysSoc, which organises social events throughout the year. Our mentoring scheme gives new starters the opportunity to connect with more experienced physics students, helping you settle into university life.
Mathematical Physics MSci
Ever since Newton’s theories of motion and gravity, the fields of physics and mathematics have been interlinked. This accredited course is taught by the Schools of Mathematical Sciences, and Physics and Astronomy. It uses advanced mathematics to further your understanding of how our universe works. It offers a solid foundation in theoretical physics and associated mathematical topics. Optional modules such as Relativity, Differential Geometry, and Black Holes give you the opportunity to specialise in the areas that interest you the most.
Our unique fourth year will develop your professional and transferrable skills with immersive, student-centred learning. You will focus on fewer but more specialised areas and complete a year-long research project. Under the guidance of our expert staff you will benefit from a range of learning styles. These include group work, projects, delivering seminars and independent learning.
Why choose this course?
This online prospectus has been drafted in advance of the academic year to which it applies. Every effort has been made to ensure that the information is accurate at the time of publishing, but changes (for example to course content) are likely to occur given the interval between publishing and commencement of the course. It is therefore very important to check this website for any updates before you apply for the course where there has been an interval between you reading this website and applying.
Mandatory
Year 1
From Newton to Einstein
Mandatory
Year 1
Quantitative Physics
Mandatory
Year 1
Analytical and Computational Foundations
Mandatory
Year 1
Calculus
Mandatory
Year 1
Linear Mathematics
Mandatory
Year 1
Probability
Mandatory
Year 2
Thermal and Statistical Physics
Mandatory
Year 2
Introduction to Mathematical Physics
Mandatory
Year 2
Vector Calculus
Mandatory
Year 2
Optics and Electromagnetism
Mandatory
Year 2
Differential Equations and Fourier Analysis
Optional
Year 2
The Structure of Stars
Optional
Year 2
The Structure of Galaxies
Optional
Year 2
Force and Function at the Nanoscale
Optional
Year 2
Complex Functions
Optional
Year 2
Mathematical Analysis
Optional
Year 2
Modelling with Differential Equations
Mandatory
Year 3
Introduction to Solid State Physics
Mandatory
Year 3
Atoms, Photons and Fundamental Particles
Mandatory
Year 3
Advanced Quantum Theory
Mandatory
Year 3
Relativity
Mandatory
Year 3
Physics Project
Optional
Year 3
Atmospheric and Planetary Physics
Optional
Year 3
Introduction to Cosmology
Optional
Year 3
Extreme Astrophysics
Optional
Year 3
Nonlinear Dynamics and Chaos
Optional
Year 3
Semiconductor Physics
Optional
Year 3
Scientific Computing
Optional
Year 3
Theoretical Elementary Particle Physics
Optional
Year 3
Fluid Dynamics
Optional
Year 3
Differential Equations 2
Optional
Year 3
Classical and Quantum Dynamics
Optional
Year 3
Complex Functions
Optional
Year 3
Mathematical Analysis
Optional
Year 3
Soft Condensed Matter
Optional
Year 3
From Accelerators to Medical Imaging
Optional
Year 3
Functional Medical Imaging
Mandatory
Year 4
Mathematical Physics Project
Optional
Year 4
Advanced Gravity
Optional
Year 4
Nonlinear Dynamics and Chaos
Optional
Year 4
Magnetic Resonance
Optional
Year 4
The Politics, Perception and Philosophy of Physics
Optional
Year 4
Theoretical Elementary Particle Physics
Optional
Year 4
Black Holes
Optional
Year 4
Differential Geometry
Optional
Year 4
Quantum Field Theory
Optional
Year 4
Introduction to Quantum Information Science
The above is a sample of the typical modules we offer but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. Modules (including methods of assessment) may change or be updated, or modules may be cancelled, over the duration of the course due to a number of reasons such as curriculum developments or staffing changes. This content was last updated on Friday 10 March 2023.
How does the world really work?
We’ll take you from Newton’s mechanics, the pinnacle of the scientific revolution and the foundation of our understanding of modern physics, right through to our current understanding of physics with Einstein’s theory of relativity and quantum mechanics.
This module will underpin your entire physics degree. It contains all the ideas and principles that form the basis of our modern world. As you’ll find out, some of these ideas are very strange indeed.
You’ll study:
This year-long module will train you in the mathematical modelling of physical processes. You’ll cover topics such as basic statistics and errors, dimensional analysis, curve sketching, orders of magnitude and estimates, and integrating problems in physics among others.
The idea of proof is fundamental to all mathematics. We’ll look at mathematical reasoning using techniques from logic to deal with sets, functions, sequences and series.
This module links directly with your study in Calculus and Linear Mathematics. It provides you with the foundations for the broader area of Mathematical Analysis. This includes the rigorous study of the infinite and the infinitesimal.
You will also learn the basics of computer programming. This will give you the chance to use computational algorithms to explore many of the mathematical results you’ll encounter in your core modules.
Your study will include:
How do we define calculus? How is it used in the modern world?
The concept can be explained as the mathematics of continuous change. It allows us to analyse motion and change in time and space.
You will cover techniques for differentiating, integrating and solving differential equations. You’ll learn about the theorems which prove why calculus works. We will explore the theory and how it can be applied in the real world.
Your study will include:
This module gives you the mathematical tools required for later modules which involve modelling with differential equations. These include:
Vectors, matrices and complex numbers are familiar topics from A level Mathematics and Further Mathematics. Their common feature is linearity. A linear mathematical operation is one which is compatible with addition and scaling.
As well as these topics you’ll study the concept of a vector space, which is fundamental to later study in abstract algebra. We will also investigate practical aspects, such as methods for solving linear systems of equations.
The module will give you the tools to analyse large systems of equations that arise in mathematical, statistical and computational models. For example, in areas such as:
Your study will include:
What is the importance of probability in the modern world?
It allows us to assess risk when calculating insurance premiums. It can help when making investment decisions. It can be used to estimate the impact that government policy will have on climate change or the spread of disease.
We will look at the theory and practice of discrete and continuous probability. Your study will include:
These topics will help you prepare for later modules in:
Macroscopic systems exhibit behaviour that often differs from that of their microscopic constituents. This module explores the relationship between the macro and micro worlds, and the complexity which emerges from the interplay of many interacting degrees of freedom.
You’ll study:
This course develops Newtonian mechanics into the more powerful formulations due to Lagrange and Hamilton and introduces the basic structure of quantum mechanics. The course provides the foundation for a wide range of more advanced courses in mathematical physics.
This course aims to give students a sound grounding in the application of both differential and integral calculus to vectors, and to apply vector calculus methods and separation of variables to the solution of partial differential equations. The module is an important pre-requisite for a wide range of other courses in Applied Mathematics.
This is a core module targeted at year 2 Mathematical Physics students and Natural Sciences students on the Maths and Physics pathway. You’ll study the physics of light and Maxwell’s equations on electrodynamics.
This is a core module targeted at year 2 Mathematical Physics students and Natural Sciences students on the Maths and Physics pathway. You’ll study:
This course is an introduction to Fourier series and integral transforms and to methods of solving some standard ordinary and partial differential equations which occur in applied mathematics and mathematical physics.
The course describes the solution of ordinary differential equations using series and introduces Fourier series and Fourier and Laplace transforms, with applications to differential equations and signal analysis. Standard examples of partial differential equations are introduced and solution using separation of variables is discussed.
10 credits in the Spring Semester
In this module you will learn how the same physics that works on Earth – gravity, electromagnetism, thermodynamics, optics, quantum physics, atomic and nuclear physics – is used to understand stars. You will explore the most important physical processes occurring in stars of different types. You will then use this knowledge to build mathematical models of stars and to understand their internal structure, their formation, evolution, and death.
You’ll study:
This module will develop your current understanding of the various large-scale physical processes that dictate the formation, evolution and structure of galaxies, from when the Universe was in its infancy to the present day.
You’ll explore a range of topics, starting with the fundamentals of observational techniques used by astronomers for understanding the structure of our own galaxy, the Milky Way. We will then look at the more sophisticated ways of unpicking the physics that drives the complexity we see throughout the population of galaxies in the Universe.
Specifically, in this module, you will study:
We will study some of the fundamental forces at the nanoscale and look at the role of key concepts such as entropy. We will also learn how we can visualise and measure the nanoscale structures that form.
The nanoscale world is very different from our regular experience. Thermal energy pushes and pulls everything towards a state of disorder whilst nanoscale forces allow for materials to resist this and stay together. We will study some of the fundamental forces at the nanoscale and look at the role of key concepts such as entropy. We will also learn how we can visualise and measure the nanoscale structures that form.
While the forces we will study operate over distances as small as 1 nanometre we will explore how these concepts are responsible for phenomena in our everyday world we often don’t even think about:
In this module you will learn about the theory and applications of functions of a complex variable using a method and applications approach. You will develop an understanding of the theory of complex functions and evaluate certain real integrals using your new skills.
In this module you will build on the foundation of knowledge gained from your core year one modules in Analytical and Computational Foundations and Calculus. You will learn to follow a rigorous approach needed to produce concrete proof of your workings.
This module will provide you with tools to develop and analyse linear and nonlinear mathematical models based on ordinary and partial differential equations. You will also meet the fundamental mathematical concepts required to model the flow of liquids and gases. This will enable you to apply the resulting theory to model physical situations.
Solid state physics underpins almost every technological development around us, from solar cells and LEDs to silicon chips and mobile phones.
The aim of this module is to introduce to you the fundamental topics in solid state physics. We start by looking at why atoms and molecules come together to form a crystal structure. We then follow the electronic structure of these through to interesting electronic, thermal and magnetic properties that we can harness to make devices.
You’ll study:
This module will introduce students to the physics of atoms, nuclei and the fundamental constituents of matter and their interactions. The module will also develop the quantum mechanical description of these.
Topics to be covered are:
In this module you will apply the quantum mechanics that you learned in Year 2 to more general problems. New topics will be introduced such as the quantum theory of the hydrogen atom and aspects of angular momentum such as spin.
You will be introduced to Einstein’s theory of general and special relativity. The relativistic laws of mechanics will be described within a unified framework of space and time. You’ll learn how to compare other theories against this work and you’ll be able to explain exciting new phenomena that occur in relativity.
You will carry out a project drawn from one of several areas of physics. The project may be experimental or theoretical in nature. Many of the projects reflect the research interests of members of academic staff. You will work in pairs and are expected to produce a plan of work and to identify realistic goals for your project. Each pair has a project supervisor responsible for setting the project. You will also be required to maintain a diary/laboratory notebook throughout.
Occasionally the work from these projects is used in scientific publications, and the students involved are named as authors on those publications.
Depending upon the type of project that you decide to do, you will design and carry out your own experiments, theoretical calculations or computational work and use them to generate what are often new and interesting results. The project culminates in your writing a scientific report which is submitted for assessment along with your laboratory notebook.
In this module you will explore the physics of planets and their atmospheres — a topic that is at the forefront of modern astrophysics and planetary science.
In the last few decades, the discovery of thousands of exoplanets beyond our Solar System has revolutionised the study of planets and their atmospheres.
Closer to home, understanding the physical processes at play in the Earth’s atmosphere remains vital for predicting weather and climate.
You’ll study:
Cosmology is the scientific study of the Universe as a whole. It aims to understand what the Universe is made of, and its evolution from the Big Bang until today (and into the future).
You’ll study:
This module explores the physical processes involved in the most extreme environments known in the Universe. Among the objects studied are neutron stars, black holes, supernova explosions, and active galactic nuclei.
How can complicated nonlinear mechanical, electrical and biological systems be understood? In this module you will develop your knowledge of classical mechanics of simple linear behaviour to include the behaviour of complex nonlinear dynamics. You’ll learn about the way in which nonlinear deterministic systems can exhibit essentially random behaviours, and approaches to understand and control them.
You’ll learn:
This module introduces you to the physics and applications of Semiconductors. Semiconductors are key materials of the current Information Age. They enabled most of the devices and technologies we use everyday, such as computers, internet, mobile phones. Semiconductors help us to mitigate global warming, data theft, end of the Moore’s law and other global challenges.
This module includes detailed overview of the Semiconductors past, present and future, and provides skills and knowledge essential for a future Semiconductor researcher or engineer.
You’ll study:
This module aims to provide you with the skills necessary to use computational methods in the solution of non-trivial problems in physics and astronomy. You’ll also sharpen your programming skills through a three hour computing class and one hour of lectures per week.
Particle physics has been hugely influential in both science and society, from the discovery of the electron to the detection of the Higgs boson. In this module you will be introduced to the mathematical tools required to understand our current description of the Standard Model of particle physics.
You’ll study:
You will extend your understanding of fluid flow by introducing the concept of viscosity and studying the fundamental governing equations for the motion of liquids and gases.
Methods for solution of these equations are introduced, including exact solutions and approximate solutions valid for thin layers. A further aim is to apply the theory to model fluid dynamical problems of physical relevance.
This course introduces various analytical methods for the solution of ordinary and partial differential equations, focussing on asymptotic techniques and dynamical systems theory. Students taking this course will build on their understanding of differential equations covered in Modelling with Differential Equations.
The module introduces and explores methods, concepts and paradigm models for classical and quantum mechanical dynamics. We explore how classical concepts enter quantum mechanics, and how they can be used to find approximate semi-classical solutions.
In this module you will learn about the theory and applications of functions of a complex variable using a method and applications approach. You will develop an understanding of the theory of complex functions and evaluate certain real integrals using your new skills.
In this module you will build on the foundation of knowledge gained from your core year one modules in Analytical and Computational Foundations and Calculus. You will learn to follow a rigorous approach needed to produce concrete proof of your workings.
This module aims to to give you a basic grounding in key concepts in soft condensed matter physics. It will focus on the dynamic, structural and kinematic properties of these materials as well as their self-assembly into technologically important structures for the production of nanostructured materials.
Key differences and similarities between soft matter, hard matter and liquid systems will be highlighted and discussed throughout the module. Material that will be covered includes:
Science is the cornerstone of modern healthcare. For example, in the UK’s National Health Service (NHS) more than 80% of clinical decisions are informed by scientific analysis.
In this module, we will explore some of the critical technologies that underpin these decisions. The course begins by exploring particle accelerators, and how they are used to create, for example, high energy photons or anti-matter particles. We will then see how these are used to either diagnose or treat illnesses such as cancer.
We will look closely at medical imaging techniques such as X-ray computed tomography (the CT scan), exploring the mathematics of how high-definition images of the body can be formed. We will cover nuclear medicine – how radiation can be used to track the function of organs in the body – and how advanced mathematical models feed into diagnostic decisions.
The techniques for magnetic resonance imaging (MRI) and spectroscopy (MRS) are explored. The course aims to introduce the brain imaging technique of functional magnetic resonance imaging (fMRI), giving an overview of the physics involved in this technique. The electromagnetic techniques of electroencephalography (EEG) and magnetoencephalography (MEG) will then be outlined, and the relative advantages of the techniques described.
The module consists of a project which aims to solve a theoretical problem. Problems are sponsored by theoreticians from either physics and astronomy or mathematical sciences. Day-to-day supervision of the project is carried out by the supervisor but the assessment will involve input from both the supervisor and the module convenors.
What is gravity? To Isaac Newton it was the force that made the apple fall, or that held the planets in orbit around the Sun. To a particle physicist, it is the exchange of virtual gravitons. To a string theorist, it is the exchange of closed strings. For us, in this course, gravity will be a fake! It isn’t a force at all. It is the shape of spacetime. Gravity is geometry, and for that you need to learn some funky mathematics. That is what this module is all about.
What is gravity? To Isaac Newton it was the force that made the apple fall, or that held the planets in orbit around the Sun. To a particle physicist, it is the exchange of virtual gravitons. To a string theorist, it is the exchange of closed strings. For us, in this course, gravity will be a fake! It isn’t a force at all. It is the shape of spacetime. Gravity is geometry, and for that you need to learn some funky mathematics. That is what this module is all about.
You’ll learn about:
How can complicated nonlinear mechanical, electrical and biological systems be understood? In this module you will develop your knowledge of classical mechanics of simple linear behaviour to include the behaviour of complex nonlinear dynamics. You’ll learn about the way in which nonlinear deterministic systems can exhibit essentially random behaviours, and approaches to understand and control them.
You’ll learn:
This module will explain how the intrinsic spin of nuclei and electrons is exploited in magnetic resonance experiments. It will describe the classical and quantum pictures of the phenomenon of nuclear magnetic resonance (NMR) and show why NMR forms such a powerful analytical tool, today. Basic electron paramagnetic resonance (EPR) will also be described, along with the equipment used for NMR and EPR, and some applications of these techniques.
In this module you'll gain an appreciation of the broad societal impact of physics (and science in general). You'll be introduced to the politics surrounding science policy (on, e.g., global warming/renewable energy R&D) and research funding. You'll also explorre some of the key ideas in the philosophy of physics and science, particularly as they relate to public perception of scientific research.
Particle physics has been hugely influential in both science and society, from the discovery of the electron to the detection of the Higgs boson. In this module you will be introduced to the mathematical tools required to understand our current description of the Standard Model of particle physics.
You’ll study:
You’ll systematically study black holes and their properties, including astrophysical processes, horizons and singularities. You’ll have an introduction to black hole radiation to give you an insight into problems of research interest. You’ll gain knowledge to help you begin research into general relativity.
By studying this module, you’ll be equipped with the tools and knowledge to extend your understanding of general relativity. You’ll explore more abstract and powerful concepts using examples of curved space-times such as Lie groups and manifolds among others.
In this year-long module you’ll be introduced to the study of the quantum dynamics of relativistic particles. You’ll learn about the quantum description of electrons, photons and other elementary particles, leading to an understanding of the standard model of particle physics.
This module gives a mathematical introduction to quantum information theory. The aim is to provide you with a background in quantum information science. This will help with your further independent learning and allow you to understand the scope and nature of current research topics.
For a typical core module the examination carries a weight of 80%, the remaining 20% usually being allocated for regular coursework and workshop assignments throughout the year.
Typically in the first year, there are 10 lectures per week including problem sheets and directed reading. Some modules are supplemented by additional workshops where you will have the opportunity to put your learning into practice.
You will benefit from having both a maths and a physics tutor. You will take part in weekly small group tutorials (typically five students), where your tutor will provide support and guidance. These will alternate between maths and physics in the first year. Subsequent years will vary with the largest change being no more weekly tutorials.
Studying advanced physics will enable you to become more adaptable and better at problem solving. These are invaluable traits for any career. Our students go on to work in a variety of industries, including engineering, aerospace, IT, and finance, as well as academic research. Others use their training in communication skills to enter teaching or science communication careers.
Employers of our graduates include Accenture, BBC, EDF Energy, Jaguar Land Rover, and various NHS Trusts. Roles include Trainee Clinical Scientist, Medical Physicist, Systems Engineer, Data Analyst and Software Development Engineer.
The student-centred nature of the fourth year will give you additional experience in communication, group work, and project management.
73.9% of undergraduates from the School of Physics & Astronomy secured graduate level employment or further study within 15 months of graduation. The average annual salary for these graduates was £27,714.*
*HESA Graduate Outcomes 2019/20 data published in 2022. The Graduate Outcomes % is derived using The Guardian University Guide methodology. The average annual salary is based on graduates working full-time within the UK.
Studying for a degree at the University of Nottingham will provide you with the type of skills and experiences that will prove invaluable in any career, whichever direction you decide to take.
Throughout your time with us, our Careers and Employability Service can work with you to improve your employability skills even further; assisting with job or course applications, searching for appropriate work experience placements and hosting events to bring you closer to a wide range of prospective employers.
Have a look at our careers page for an overview of all the employability support and opportunities that we provide to current students.
The University of Nottingham is consistently named as one of the most targeted universities by Britain’s leading graduate employers (Ranked in the top ten in The Graduate Market in 2013-2020, High Fliers Research).
University Park Campus covers 300 acres, with green spaces, wildlife, period buildings and modern facilities. It is one of the UK's most beautiful and sustainable campuses, winning a national Green Flag award every year since 2003.
Faculty of Science
3 Years full-time
Qualification
BSc Hons
Entry requirements
A*AA - AAA
UCAS code
F350
Faculty of Science
4 Years full-time
Qualification
MSci Hons
Entry requirements
A*AA-AAA
UCAS code
F371
Faculty of Science
3 Years full-time
Qualification
BSc Hons
Entry requirements
A*AA-AAA
UCAS code
F346
Faculty of Science
3 Years full-time
Qualification
BSc Hons
Entry requirements
A*AA - AAA
UCAS code
F300
Faculty of Science
3 years full-time
Qualification
BSc Hons
Entry requirements
A*AA - AAA
UCAS code
F3R9
Our webpages contain detailed information about all processes in your student journey. Check them out alongside our student enquiry centre to find the information you need. If you’re still struggling, head to our help page where you can find details of how to contact us in-person and online.