Building on your knowledge from year one, you’ll undertake a project that will conclude with a dissertation.
Available modules will complement your biochemistry and medicine training while providing an opportunity to diversify your learning.
Structure, Function and Analysis of Genes
This module will provide you with a comprehensive understanding of the structures of DNA and RNA and how the information within these nucleic acids is maintained and expressed in both prokaryotic and eukaryotic cell types. Additionally, this module describes how nucleic acids can be manipulated in vitro using molecular biological approaches. Practical classes will focus your learning on the cloning and manipulation of DNA to express recombinant proteins in bacterial systems.
Signalling and Metabolic Regulation
This module considers the mechanisms and purpose of cell to cell signalling and metabolic regulation and includes the regulation of carbohydrate and lipid metabolism and an outline of the various major signalling systems in mammals including signal transduction in G-protein coupled signalling systems, growth factors, cytokines and their receptors, cell-cell signalling and the extracellular matrix (ECM) and the role of the ubiquitin-proteasome system. The regulation and integration of various metabolic pathways will be covered in health and disease illustrated with specific examples and related to the signalling pathways covered in this module to provide an understanding of how biochemical processes are integrated and regulated. The module also includes laboratory classes where you will use techniques to study signal transduction and metabolism.
Structure, Function and Analysis of Proteins
This module considers the structure and function of soluble proteins and how individual proteins can be studied in molecular detail. More specifically you will learn about the problems associated with studying membrane-bound proteins and build an in-depth understanding of enzyme kinetics and catalysis. You will learn about the practical aspects of affinity purification, SDS PAGE, western blotting, enzyme assays, bioinformatics and molecular modelling approaches.
Higher Skills in Biochemistry
This module further develops and enhances the skills you will have learned in the year one skills module. In year two you will write a short dissertation, solve biochemical problems, explore the scientific method applied to biochemistry, learn how to present science to the public and look issues around the ethics of science and research. The module includes lectures, tutorials and workshops.
In addition to the above compulsory modules you have 20 credits of optional modules you can choose from including:
Intermediate Organic Spectroscopy and Stereochemistry
The module provides both a theoretical description of modern spectroscopic techniques (NMR, IR, and mass spectrometry) for structural analysis of organic and biological molecules and practical applications of these techniques in problem solving. Aspects of the stereochemistry of bio-organic molecules are covered, including conformational analysis and stereocontrol in bio-organic reactions.
From Genotype to Phenotype and Back
This module studies transporters and channels, groups of proteins responsible for controlling the flow of substances across lipid bilayers that are critical for cellular homeostasis. You will learn the basics of transporter and channel biology, and then apply this knowledge to design virtual experiments, the simulated results of which would gradually reveal the molecular basis of a transporter or channel related disease. You will design a series of “virtual experiments”, with appropriate controls, in order to probe the function of a particular gene in a physiological condition.
Intermediate Synthetic Organic Chemistry
The module is divided into two parts: (a) Functional group chemistry: synthetic transformations of alcohols, amines, carbonyls, and alkenes, and how these transformations are used to synthesise complex molecules such as natural products or pharmaceutical agents. (b) Synthesis: Introduction to retrosynthetic analysis and synthesis of organic molecules using a selection of pharmaceutical agents as examples. Formative feedback is given on the material in this module at the associated workshops. Summative feedback is provided after the exam by the module convenor.
Macromolecules and Macromolecular Assemblies: Structure, Analysis and Advanced Microscopy
This module is aimed at introducing the students to the methodological arsenal for studying complex macromolecular systems in vitro and in cells using specific biological examples. It provides an overview of the structures and function of biological macromolecules and macromolecular assemblies with an emphasis on proteins. The module introduces modern structural methods and advanced microscopy techniques in the context of their biological applications.
Infection and Immunity
You will study microbiology, learning about pathogenic microbes including viruses, fungi, parasites and the roles of bacteria in health and disease. You will learn how the body generates immunity; the causes of diseases associated with faulty immune responses will be considered. In applied microbiology you will be introduced to recombinant DNA technology and prokaryotic gene regulation.
Pharmacological Basis of Therapeutics
Primary objective of the module
This module will examine in depth the analysis of drug action, and its application to the design and use of current therapeutics.
Module content
This module will examine in depth the analysis of drug action, and its application to the design and use of current therapeutics. We will define what drugs are, the different ways they act at the cellular and molecular level, and pharmacokinetic principles underlying drug absorption, distribution, metabolism and elimination. This framework will provide the basis to explore the rationale and goals of treatment for clinical therapeutic case studies. These will highlight major current challenges to human health – in cardiovascular and respiratory disease, diabetes and obesity, CNS disorders, cancer and infectious disease. Overall, the student will develop a deep understanding of what the discipline of pharmacology represents, and its application to both basic biological research and current and future medical advances.
Bacterial Genes and Development
Molecular events that occur during the control of gene expression in bacteria will be explored. You'll learn by considering case studies, which will show you how complex programmes of gene action can occur in response to environmental stimuli. You will also study the regulation of genes in pathogenic bacteria.
Microbial Biotechnology
You'll cover the key groups of eukaryotic and prokaryotic microorganisms relevant to microbial biotechnology, principles of GM, and strain improvement in prokaryotes and eukaryotes. The impact of “omics”, systems biology, synthetic biology and effects of stress on industrial microorganisms are explored, alongside the activities of key microorganisms that we exploit for biotechnology.
The above is a sample of the typical modules we offer but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. Modules (including methods of assessment) may change or be updated, or modules may be cancelled, over the duration of the course due to a number of reasons such as curriculum developments or staffing changes. Please refer to the
module catalogue for information on available modules. This content was last updated on