Course overview

Chemistry contributes directly to our everyday lives, from the food we eat and the medicines we take, to the environment in which we live.

On this undergraduate masters-level course, you will have the opportunity to spend an assessed year in a research laboratory of a major chemical company in year three. You will be a paid employee and will work on a research project. In addition you will complete three distance learning theory modules. Recent destinations for placement students have included Actelion, AstraZeneca, BP, GlaxoSmithKline, Lubrizol and Sygnature.

100% of students on this course go into work or further study 15 months after graduation. HESA Graduate Outcomes 2021. 

A degree in chemistry will prepare you for a wide range of careers. You’ll develop the necessary academic and practical skills for a career in industry, whether that be in pharmaceutical, petrochemical, cosmetics or others. You’ll also develop your written and oral communication skills, and gain transferable skills such as problem-solving, numeracy and data analysis. These are desired by other industries including finance, media, and management. A significant proportion of our students also go onto postgraduate study.

You'll be taught by academic staff who will feed your curiosity for chemistry. You may even recognise some of our staff from the popular Periodic Videos YouTube channel.

You'll study all the key areas of chemistry, including organic, inorganic and physical chemistry. You can also choose to explore the links between chemistry, physics and biology. Optional modules allow you to tailor your degree to your own interests.

We have a major focus on studying green and sustainable chemistry. Choosing an optional module in this topic will show how we are tackling environmental challenges. The University of Nottingham is home to the Carbon Neutral Laboratories for Sustainable Chemistry.

Why choose this course?

Industry experience

You’ll have the opportunity to work as a paid employee of a major chemical company



Flexibility to transfer between most chemistry degrees

Optional modules

Choose from a range of optional modules that interest you

Small-group learning

Benefit from small-group tutorials that support your learning

Modern facilities

Put theory into practice in our modern labs and facilities

Entry requirements

All candidates are considered on an individual basis and we accept a broad range of qualifications. The entrance requirements below apply to 2022 entry.

UK entry requirements
A level ABB in Clearing for home students

Please note: Applicants whose backgrounds or personal circumstances have impacted their academic performance may receive a reduced offer. Please see our contextual admissions policy for more information.

Required subjects

A level chemistry. GCSE maths at grade 4 (C) (or equivalent), plus GCSE in English at 4 (C) or above.

IB score 32; 5 in chemistry at Higher Level in Clearing for home students

A levels

  • ABB in Clearing for home students, including chemistry
  • A pass is normally required in science practical tests, where these are assessed separately


  • Mathematics at grade 4 (C) (or equivalent)
  • Plus GCSE in English at 4 (C) or above

If you do not meet the MSci grades in your offer but meet the BSc Chemistry grades then you will automatically be offered a place for the BSc F100 degree.

Foundation progression options

If you don't meet our entry requirements there is the option to study the science foundation programme. You may have the opportunity to progress onto the Chemistry BSc programme, subject to your performance on the foundation programme. There is a course for UK students and one for EU/international students.

Mature Students

At the University of Nottingham, we have a valuable community of mature students and we appreciate their contribution to the wider student population. You can find lots of useful information on the mature students webpage.

Learning and assessment

How you will learn

Teaching methods

  • Computer labs
  • Lab sessions
  • Lectures
  • Tutorials
  • Workshops
  • Seminars

How you will be assessed

An overall mark of 60% or above is required in first and second years to progress to the third year of this degree.

Students who do not progress into year three or are unable to gain an industrial placement will join the third year of the BSc or MSci degrees depending on their credit-weighted average for the second year.

Assessment methods

  • Coursework
  • Lab reports
  • Research project
  • Written exam
  • Group project
  • Oral exam
  • Poster presentation

Contact time and study hours

There are typically 10 lectures in addition to 8 to 10 hours of laboratory classes per week.

You will be assigned a personal tutor who will support you through your studies and help you make the most of the opportunities available at Nottingham. Your personal tutor will guide your personal and academic development, offering you help, encouragement and guidance.

Core modules are typically delivered by assistant professors, associate professors, or professors. Some study skills modules may be taught by PhD students.

Study abroad

A study abroad opportunity isn’t offered on this course. If you are interested in studying abroad, you may want to look at the Chemistry with an International Study Year MSci.

Students who choose to study abroad are more likely to achieve a first-class degree and earn more on average than students who did not (Gone International: Rising Aspirations report 2016/17).

Year in industry

A year in industry gives you the opportunity to spend a year on placement with an industrial partner. This can help improve your employability and enables you to apply your learning to a practical setting.

Previous students have worked at Boots, GlaxoSmithKline, NHS and HSBC. 

You will be supported by the University as you apply for placements.

Study Abroad and the Year in Industry are subject to students meeting minimum academic requirements. Opportunities may change at any time for a number of reasons, including curriculum developments, changes to arrangements with partner universities, travel restrictions or other circumstances outside of the university’s control. Every effort will be made to update information as quickly as possible should a change occur.

Chemistry facilities

See what it is like to study in the School of Chemistry. Take a look at our modern labs, teaching environment and research areas. Our STEM lab has capacity for 150 students. The teaching laboratory is fully equipped with cutting-edge facilities and equipment for research and teaching.


Build on your pre-university studies through modules in core chemistry.

If you do not have A level mathematics (or equivalent) then you will take the Mathematical Toolkit module to prepare you for this aspect of the chemistry course.

Introduction to Structure, Periodicity and Coordination Chemistry

This module builds on your previous studies in chemistry and provides a firm foundation in topics including:

  • atomic and molecular structure
  • the shapes of molecules
  • chemical bonding
  • Lewis structures
  • molecular shape and symmetry
  • Intermolecular interactions and periodic trends in the properties of the elements of the s- and p-blocks
  • the chemistry of the transition metal elements and their coordination complexes.

You’ll attend two lectures per week for this module.

Introduction to Spectroscopy, Energy and Bonding in Chemistry

In this module you will learn about the development of quantum theory and the spectroscopy of the hydrogen atom. You will examine the theories used to describe the bonding in molecules and will develop an understanding of microwave and infra-red spectroscopies.

The module also introduces you to some of the key concepts in thermodynamics including enthalpy, entropy and free energy and their application in describing equilibria and electrochemical processes. You will develop an understanding of the key concepts in reaction kinetics. 

You’ll attend two lectures per week for this module.

Introduction to Organic Molecules and their Reactivity

You’ll examine the fundamental principles of organic chemistry. This will include nomenclature, bonding concepts, orbitals and the shape, stereochemistry and acid-base properties of organic molecules.

Later the module will focus on reactivity and important reactions and transformations in organic chemistry.

You’ll attend two lectures per week for this module.

Foundation Laboratory Work

This module introduces you to the essential laboratory skills that are required in inorganic, organic and physical chemistry.

You’ll spend around eight hours per week in laboratory practicals performing experiments, and collecting and analysing data.

You’ll present written reports of your experimental work that will form part of the assessment for this module.

Chemistry Study Skills

You’ll follow this introductory module right at the start of your course. It is designed to develop your study skills so that you can work effectively at University.

The module will also introduce you to first-year undergraduate laboratory chemistry.

You’ll spend around four hours in your first week in practical sessions studying this module.

Calculations in Chemistry

This module is for those who already with A level maths will teach you the essential mathematic skills required for chemists. You will learn how to use your maths skills to solve a variety of problems in chemistry.

There will be two hours of lectures per week with a one hour workshop.

Optional modules

Molecules of Life

You’ll learn about Nature's building blocks including the structure and functions of lipids, amino acids, carbohydrates and nucleotides. You'll also learn about the reactivity of these molecules and their biological roles through case studies.

Introduction to Green Chemistry and Processing

In this module you’ll look at green chemistry in its broadest sense, covering the fundamental concepts and chemistry involved in making chemical processes cleaner and more environmentally benign.

You’ll spend one hour per week in lectures, seminars and workshops over the whole year studying this module.

Frontiers in Chemistry

This module will introduce you to selected topics at the forefront of current research in chemistry from a physical chemistry perspective.

Example topics include:

  • nanochemistry and its applications
  • energy generation and storage technologies
  • chemistry in the digital age
  • the chemistry of ions
  • the application of advanced photon sources
Mathematical Toolkit

You’ll gain a firm understanding of the use of mathematical equations in a chemical context through the study of topics including: scientific notation and significant figures; common chemical units and conversions between them; the rearrangement of chemical expressions and their graphical representation; trigonometry, differentiation and integration, and differential equations for chemical problems.

This module is compulsory for students not offering A level mathematics (or equivalent); optional for students offering A level mathematics or equivalent.

The above is a sample of the typical modules we offer but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. Modules (including methods of assessment) may change or be updated, or modules may be cancelled, over the duration of the course due to a number of reasons such as curriculum developments or staffing changes. Please refer to the module catalogue for information on available modules. This content was last updated on Friday 02 September 2022.

In the second year, theoretical and practical modules further develop the knowledge and understanding gained in the first year. Optional modules will allow you to specialise in an area of chemistry that particularly interests you.

Core modules

General Inorganic Chemistry

You’ll spend two hours per week in lectures studying topics including the synthesis, bonding and reactivity of organometallic compounds, the use of symmetry and group theory to interpret infra-red spectra and NMR spectroscopy in inorganic chemistry.

Further support is provided by tutorials every third week.

Principles of Analytical Chemistry

You’ll be introduced to the principles of analytical chemistry, including the principal types of instrumentation used and the statistical treatment of analytical results.

You’ll attend two lectures each week studying this module.

Synthesis and Spectroscopy

In this module, you’ll discuss the reactivity of, suggest synthetic routes for and interpret the spectroscopic characterisation of organic compounds including some natural products.

Topics studied include:

  • modern spectroscopic techniques
  • carbon-carbon bond forming reactions
  • the influence of heteroatoms on reactivity

You’ll attend two lectures each week in this module and tutorials every third week.

Core Laboratory Work

This module builds on the practical, analytical and communication skills developed in the first year and introduces experiments across the range of chemistry, based on your second year theory modules.

You’ll spend around 10 hours per week in practicals for this module. 

Energy, Spectroscopy and Solid State Chemistry

In this module you'll study  the physical principles underlying chemical phenomena, with emphasis on energy, quantum mechanics and spectroscopy. You'll also be introduced to solid-state chemistry, including the structure, characterisation, energetics and the band theory of solids.  

You’ll attend two hours of lectures each week in this module. 

Optional modules

Atmospheric Chemistry

You’ll study topics such as the physical properties of the atmosphere, chemistry of ozone in the stratosphere, global warming, and analytical methods in atmospheric chemistry in two lectures each week.

Medicinal Chemistry and Molecular Biology

The fundamental building blocks of life are essential for life as we know it but what exactly are they and how can this aid us in the development of medicinal drugs? This module will provide you with the fundamental concepts in molecular biology, medicinal chemistry and drug discovery, enabling you to understand the mode of action of anti-cancer agents, antibiotics and toxins.  

You’ll study: 

  • Molecular Processes in Cells, including Cell Signalling, DNA replication, Transcription, Translation, Protein Folding, Protein Transport and Protein Degradation
  • Analysis of Pharmacodynamic and Pharmacokinetic Data 
  • Cell Cycle, Cancer and Apoptosis
  • Microbiology, including anatomy of bacterial cells and action of antibiotics 
  • Viruses and viral diseases, as well as anti-viral agents studied in case studies 

 You’ll attend two lectures each week for this module. 

Advanced Calculus and Differential Equation Techniques

You will be introduced to the differential calculus of functions and vector operators. You’ll consider the development of techniques for the solution of boundary and initial value problems for ordinary differential equations. 

Sustainable Chemistry

This module covers material related to developing a more sustainable approach to chemistry. You will learn what constitutes sustainable chemistry, the significance of new technologies such as synthetic biology, and recognise the problems in achieving sustainability.

The above is a sample of the typical modules we offer but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. Modules (including methods of assessment) may change or be updated, or modules may be cancelled, over the duration of the course due to a number of reasons such as curriculum developments or staffing changes. Please refer to the module catalogue for information on available modules. This content was last updated on

You will have the opportunity to work on a 90-credit research project in a research laboratory of a major chemical company where you will be a salaried employee.

Three 10-credit distance learning theory modules will develop your core chemistry knowledge.

Core modules

Industry Placement

In this module, you will have the opportunity to undertake a full-time research placement in the pharmaceutical, biotech, healthcare or related industry where you will develop the application of science.

Organic Chemistry Distance Learning

You'll learn about a range of modern reagents and synthetic methodology, and how these are applied to the synthesis of organic target molecules, such as natural products and active pharmaceuticals.

You'll learn about organolithium reagents and how modern palladium-mediated cross-coupling reactions can be used to synthesise complex organic molecules.

You’ll follow this module throughout the year through independent study and will be assessed by three written assignments.

Inorganic Chemistry Distance Learning

You’ll study the roles of inorganic elements and molecules in biology, the inorganic aspects of the N and O cycles. You’ll learn about the electronic structure, co-ordination chemistry, and redox properties of d-transition metal ions in biological systems and the roles of metalloproteins in dioxygen transport, electron transfer, photosynthesis and dinitrogen fixation.

You’ll follow this module throughout the year through independent study and will be assessed by three written assignments.

Physical Chemistry Distance Learning

You’ll study the relationships between structure and properties of solids, and develop electronic structure theories that account for a wide range of properties of solids. You’ll learn about semi-conductors, photoconductivity, LEDs and solar cells. You’ll also study the modern theoretical methods that are used to calculate the properties of molecules and materials.

You’ll follow this module throughout the year through independent study and will be assessed by three written assignments.

The above is a sample of the typical modules we offer but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. Modules (including methods of assessment) may change or be updated, or modules may be cancelled, over the duration of the course due to a number of reasons such as curriculum developments or staffing changes. Please refer to the module catalogue for information on available modules. This content was last updated on

You will work on an in-depth research project in an area of your choice. The project will develop not only your practical ability, team working and problem-solving skills, but also your literature and presentation skills.

Core modules

MSci Chemistry Research Project

You will be welcomed into one of the research groups within the School of Chemistry to undertake an in-depth research project.

All projects will involve a review of relevant published work and the planning and execution of a research topic under the guidance of two supervisors.

Optional modules

Advanced Physical Chemistry

Building on your knowledge from the previous years' modules in inorganic chemistry, you’ll study topics including:

  • electron transfer pathways
  • inorganic chemistry in biological systems
  • the principles of molecular and supramolecular photochemistry
  • applications of inorganic photochemistry
  • photocatalysis

You’ll attend two lectures each week in this module. 

Contemporary Organic Synthesis

Explore the synthesis of a variety of natural (and unnatural) compounds of relevance to biology and medicine, with reference to the goals and achievements of contemporary organic synthesis through a range of case studies. There is an emphasis on the use of modern synthetic methodology to address problems such as chemoselectivity, regiocontrol, stereoselectivity, atom economy and sustainability.

You will also study the application of new methodology for the rapid, efficient and highly selective construction of a range of target compounds - particularly those that display significant biological activity. There will also be an opportunity to address how a greater understanding of mechanism is important in modern organic chemistry. This module is assessed by a two hour exam.

Nucleic Acids and Bioorganic Mechanisms

During this module you will learn to understand in depth the structure, chemistry and molecular recognition of nucleic acids and their reactivity towards mutagens, carcinogens and ionising radiation and anti-tumour drugs. You will appreciate the plasticity and dynamics of the DNA duple helix through base motions that underpin its function.

The bacterial replisome will be used as the prime example to highlight the problems associated with DNA replication and the significance of telomeres will be discussed. Alongside this you will develop an understanding of the chemical reactivity of coenzymes and how these add significantly to the functionality of the 20 amino acids found in proteins. 

Inorganic and Materials Chemistry

In this module you will explore inorganic photochemistry, electron transport pathways, molecular and supramolecular photochemistry, and artificial photosynthesis together with the principles that underpin green chemistry.

You will attend two lectures per week in this module.

Molecular Interactions and Supramolecular Assembly

In this module you’ll learn about the importance of intermolecular forces, across a wide cross-section of subject areas from biology through to supramolecular chemical systems.

You'll study molecular organisation, assembly and recognition in biological and supramolecular systems.

In addition to appreciating the rich chemistry underlying self-assembling systems, you'll learn about the phenomena that impact on the properties of materials and important interactions in biology. 

You'll attend two lectures per week in this module.

Enterprise for Chemists

Students will learn about the factors that lead to successful innovation, including evaluation and management of an idea/concept.

In addition, students will consider the factors required to extract the value from a product/concept (e.g. market awareness) and the potential routes to market available from both an academic and industrial viewpoint.

Advanced Biocatalysis, Biosynthesis and Chemical Biology

Advanced Chemical Biology

To introduce concepts of chemical genetics and including activity-based protein profiling, non-natural amino acid incorporation, bio-orthogonal reactivity and the use of bump-and-hole strategies, applied to various challenges such as finding kinase/target pairs.


To introduce enzyme engineering and the synthetic utility of designer biocatalysts, especially highlighting chemo-enzymatic approaches toward chiral commodity molecules (e.g. pharmaceuticals) and their precursors.


To introduce the biosynthetic pathways and enzyme catalysed reactions leading natural products polyketides, terpenes, fatty acids and non-ribosomal peptides.

The above is a sample of the typical modules we offer but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. Modules (including methods of assessment) may change or be updated, or modules may be cancelled, over the duration of the course due to a number of reasons such as curriculum developments or staffing changes. Please refer to the module catalogue for information on available modules. This content was last updated on

Fees and funding

UK students

Per year

International students

Per year

*For full details including fees for part-time students and reduced fees during your time studying abroad or on placement (where applicable), see our fees page.

If you are a student from the EU, EEA or Switzerland, you may be asked to complete a fee status questionnaire and your answers will be assessed using guidance issued by the UK Council for International Student Affairs (UKCISA) .

Additional costs

All students will need at least one device to approve security access requests via Multi-Factor Authentication (MFA). We also recommend students have a suitable laptop to work both on and off-campus. For more information, please check the equipment advice.

As a student on this course, you should factor some additional costs into your budget alongside your tuition fees and living expenses, including:

  • scientific calculator
  • model kit (optional)
  • travel and living costs associated with the year working in industry

You should be able to access most of the books you’ll need through our libraries, though you may wish to purchase your own copies.

Due to our commitment to sustainability, we don’t print lecture notes but these are available digitally. You will be given £5 worth of printer credits a year. You are welcome to buy more credits if you need them. It costs 4p to print one black and white page.

Personal laptops are not compulsory as we have computer labs that are open 24 hours a day but you may want to consider one if you wish to work at home.

Scholarships and bursaries

The University of Nottingham offers a wide range of bursaries and scholarships. These funds can provide you with an additional source of non-repayable financial help.

Home students*

Over one third of our UK students receive our means-tested core bursary, worth up to £1,000 a year. Full details can be found on our financial support pages.

* A 'home' student is one who meets certain UK residence criteria. These are the same criteria as apply to eligibility for home funding from Student Finance.

International students

We offer a range of international undergraduate scholarships for high-achieving international scholars who can put their Nottingham degree to great use in their careers.

International scholarships


Our graduates can find roles in the pharmaceutical, chemical, food and drink, and energy sectors. This course will develop your skills in practical and theoretical chemistry, data-analysis and problem-solving. These skills are also valuable for careers in finance, education and the media.

Recent graduate destinations include:

  • Boots
  • Cancer Research UK
  • GlaxoSmithKline
  • HSBC
  • Intellectual Property Office
  • NHS
  • Unilever

Many students continue their studies in chemistry or a related discipline working towards a PhD degree.

Average starting salary and career progression

86% of undergraduates from the School of Chemistry secured graduate level employment or further study within 15 months of graduation. The average annual salary for these graduates was £25,121.*

  • Data from UoN graduates, 2017-2019. HESA Graduate Outcomes. Sample sizes vary.

Studying for a degree at the University of Nottingham will provide you with the type of skills and experiences that will prove invaluable in any career, whichever direction you decide to take.

Throughout your time with us, our Careers and Employability Service can work with you to improve your employability skills even further; assisting with job or course applications, searching for appropriate work experience placements and hosting events to bring you closer to a wide range of prospective employers.

Have a look at our careers page for an overview of all the employability support and opportunities that we provide to current students.

The University of Nottingham is consistently named as one of the most targeted universities by Britain’s leading graduate employers (Ranked in the top ten in The Graduate Market in 2013-2020, High Fliers Research).

Royal Society of Chemistry

This course is accredited by the Royal Society of Chemistry.

Dummy placeholder image

Related courses

Important information

This online prospectus has been drafted in advance of the academic year to which it applies. Every effort has been made to ensure that the information is accurate at the time of publishing, but changes (for example to course content) are likely to occur given the interval between publishing and commencement of the course. It is therefore very important to check this website for any updates before you apply for the course where there has been an interval between you reading this website and applying.