Triangle Skip to content
Exit nav

Course overview

Molecular biology, genetic engineering and biotechnology play a large factor in this degree.  You will learn how to combine the growing fields of biochemistry and genetics which could lead to the development of such revolutionary medical procedures such as personalised medicine based on your genes.

Improve your skills in the lab with practical experience from year one. You will be trained by tutors who are active in the fields of biochemistry and biology, ensuring that you leave university with the skills needed to be successful in your future career.

Through optional modules and research projects, you can tailor the course to focus on the specific areas of biochemistry that interest you. As our courses have a similar first year, there are also opportunities to switch to another biochemistry degree path at the end of year one.

BSc or MSci?

MSci degrees are undergraduate-level courses which last for four years and have an integrated masters qualification. They are the equivalent to a bachelors degree plus a masters level qualification. These courses usually provide additional industry and/or research experience to enhance your future prospects. An MSci is excellent preparation for further study such as a PhD.

If you choose to study an MSci, your student loan will cover tuition fees and living costs for the additional year too (home/EU students only). If you are unsure on whether to choose an MSci or BSc, we recommend you choose the MSci to secure your funding. Transfer to the BSc is possible.

Find out more about MSci Biochemistry and Genetics.

Why choose this course?

  • A diverse range of optional modules, allowing you to explore your interests or specialise, including an extensive list in your third year
  • Laboratory experience begins in year one
  • Be trained by tutors who are active in real world research, giving you the skills necessary for your future careers
  • The option to travel while you learn, through studying abroad or undertaking field courses in the UK and overseas

Entry requirements

All candidates are considered on an individual basis and we accept a broad range of qualifications. The entrance requirements below apply to 2021 entry.

UK entry requirements
A level offer AAB
IB score 34 (5/6 in chemistry and another science, in any order, at Higher Level)

A levels

Chemistry and at least one other science subject at A level.  A pass is required in science practical tests, if assessed separately.

GCSEs

GCSE English language and maths at grade 4 or above also required.

Foundation progression options

Biochemistry is one of the progression pathways for our Science with Foundation Year course. Requirements for progression are:

  • Foundation Biological Science - 55%
  • Foundation Chemistry - 55%
  • Overall pass - 40%

Learning and assessment

How you will learn

Teaching methods

  • Lab sessions
  • Lectures
  • Practical classes
  • Self-study
  • Seminars
  • Small group learning
  • Tutorials
  • Workshops

How you will be assessed

Exams happen twice a year at the end of each semester. 

Assessment methods

  • Coursework
  • Dissertation
  • Examinations
  • Formative assessments
  • Lab reports
  • Literature review
  • Poster presentation
  • Practical write-ups
  • Presentation

Contact time and study hours

Over 20 hours of contact time per week.

Study abroad

We offer the chance to study abroad at an approved partner university through the Universitas 21 programme. This is an exciting opportunity to gain a global perspective of science, boost your communication skills, and to discover a new culture.

Year in industry

There is also the possibility to gain valuable work experience with an optional placement year. Placements are a great opportunity to see what the sector you want to go into is like, try out specific job roles, and to gain the skills that employers want.

Please note that placements have to be organised by the student and approved by the school. The University's Careers and Employability Service can provide advice on how to find and apply for a placement. 

Information on fees for a placement or study abroad year can be found on the fees website.

Modules

Introductory modules will establish fundamental aspects of cell biology, biochemistry, genetics and the chemistry that you’ll need to understand life at the molecular level.

40 credits of optional modules exploring other areas of life sciences such as evolution or neuroscience. 20 credits can be taken from another school.

Core modules

Genes, Molecules and Cells
This module combines lectures and laboratory classes and introduces you to the structure and function of significant molecules in cells, and the important metabolic processes which occur inside them. You will study, amongst other topics, protein and enzyme structure and function, the biosynthesis of cell components, and the role of cell membranes in barrier and transport processes. You'll examine how information in DNA is used to determine the structure of gene products. Topics include DNA structure, transcription and translation and mutation and recombinant DNA technology.
Life on Earth
Life on Earth provides an introduction to the fundamental characteristics and properties of the myriad of organisms which inhabit our planet, from viruses, bacteria and Archaea, to plants and animals. In weekly lectures, and regular laboratory practical classes, you will consider how living organisms are classified, how they are related genetically and phylogenetically, and basic aspects of their structure and function.
Fundamental Inorganic and Organic Chemistry
This module provides the essential chemistry that biochemists need to understand the life process at the molecular level. The module includes atomic and molecular structure, bonding and reactivity, spectroscopy, “curly arrow” organic reactions and core organic chemistry and is taught by means of lectures and workshops.
Core Skills in Biochemistry and Genetics

Through lectures, workshops and tutorials this module will enable you to develop core skills in scientific writing, data handling and analysis, experimental design and scientific presentations. This module is designed to develop your problem solving scientific skills. An important aspect of this module is the small-group tutorials which allow you to get to know the member of staff who will be your tutor for the duration of your studies.

Optional modules

You also choose 40 credits of optional modules, 20-40 from the School of Life Sciences or 20 from Life Sciences and 20 from other schools in the University. Options from within the School of Life Sciences are as follows:

Human Physiology
In this module, you will be introduced to the physiology of major systems such as cardiovascular, nervous, and musculoskeletal, including some aspects of drug action. This module will allow you to understand your biochemical and genetics knowledge in the context of the intact organism. This module includes lectures and laboratory classes.
Evolution, Ecology and Behaviour
Starting with Darwin’s theory of evolution, you will learn how natural selection and other evolutionary forces have shaped the ways in which organisms interact with each other and their environment. In addition to lectures, practical classes will give you hands-on experience with a range of ecological and behavioural concepts in the laboratory and the field.
Fundamentals of Neuroscience
This module will give you a good grounding in the basic principles of the nervous system of humans and other animals. Topics will include neuroanatomy, cellular neuroscience, neuropharmacology, sensory systems, neuroendocrinology, memory, behavioural neuroscience and diseases of the nervous system. These will be delivered through weekly lectures and practical classes.
The above is a sample of the typical modules that we offer at the date of publication but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. This prospectus may be updated over the duration of the course, as modules may change due to developments in the curriculum or in the research interests of staff.

Building on your knowledge from year one, you’ll undertake a project that will conclude with a dissertation.

You’ll look at the complexities of eukaryotic cells. The Human Genome Project is explained, and you’ll explore genes responsible for common disorders and the development of treatments.

You have 20 credits of optional modules to choose from. 

Core modules

The Genome and Human Disease

In this module you will learn about the structure and function of the eukaryotic genome, including that of humans, and the approaches that have led to their understanding. You will learn about techniques that are employed to manipulate genes and genomes and how they can be applied to the field of medical genetics. By using specific disease examples, you will learn about the different type of DNA mutation that can lead to disease and how they have been identified. Practical elements will teach you about basic techniques used in medical genetics such as sub-cloning of DNA fragments into expression vectors. Practical classes and problem based learning will be used to explore the methods used for genetic engineering and genome manipulation.

Structure, Function and Analysis of Genes

This module will provide you with a comprehensive understanding of the structures of DNA and RNA and how the information within these nucleic acids is maintained and expressed in both prokaryotic and eukaryotic cell types. Additionally, this module describes how nucleic acids can be manipulated in vitro using molecular biological approaches. Practical classes will focus your learning on the cloning and manipulation of DNA to express recombinant proteins in bacterial systems.

Signals and Metabolic Regulation
This module considers the mechanisms and purpose of cell to cell signalling and metabolic regulation and includes the regulation of carbohydrate and lipid metabolism and an outline of the various major signalling systems in mammals including signal transduction in G-protein coupled signalling systems, growth factors, cytokines and their receptors, cell-cell signalling and the extracellular matrix (ECM) and the role of the ubiquitin-proteasome system. The regulation and integration of various metabolic pathways will be covered in health and disease illustrated with specific examples and related to the signalling pathways covered in this module to provide an understanding of how biochemical processes are integrated and regulated. The module also includes laboratory classes where you will use techniques to study signal transduction and metabolism.
Structure, Function and Analysis of Proteins

This module considers the structure and function of soluble proteins and how individual proteins can be studied in molecular detail. More specifically you will learn about the problems associated with studying membrane-bound proteins and build an in-depth understanding of enzyme kinetics and catalysis. You will learn about the practical aspects of affinity purification, SDS PAGE, western blotting, enzyme assays, bioinformatics and molecular modelling approaches.

Higher Skills in Biochemistry and Genetics
This module further develops and enhances the skills you will have learned in the year one skills module. In year two, you'll write a short dissertation, solve biochemical and genetics problems, explore the scientific method applied to biochemistry and genetics, learn how to present science to the public and look issues around the ethics of science and research. The module includes lectures, tutorials and workshops.

Optional modules

In addition to the above compulsory modules you have 20 credits of optional modules.

Developmental Biology
Examines the basic concepts of vertebrate embryonic development. You will discuss specific topics including germ cells, blood and muscle cell differentiation, left-right asymmetry and miRNAs. The teaching for this module is delivered through lectures. 
Bacterial Genes and Development
Molecular events that occur during the control of gene expression in bacteria will be explored. You'll learn by considering case studies, which will show you how complex programmes of gene action can occur in response to environmental stimuli. You will also study the regulation of genes in pathogenic bacteria.
Microbial Biotechnology

You'll cover the key groups of eukaryotic and prokaryotic microorganisms relevant to microbial biotechnology, principles of GM, and strain improvement in prokaryotes and eukaryotes. The impact of “omics”, systems biology, synthetic biology and effects of stress on industrial microorganisms are explored, alongside the activities of key microorganisms that we exploit for biotechnology.

Evolutionary Biology of Animals
Introduces key evolutionary concepts and their application in the animal kingdom. Areas you will study include the history of evolutionary thinking, natural selection versus the neutral theory, sexual selection and human evolution. 
From Genotype to Phenotype
This module serves as an introduction to the key skills of experimental design and data interpretation related to genomic analysis. You will design a series of ‘virtual’ laboratory experiments, with appropriate controls in order to probe the function of a particular gene in a physiological condition.
The above is a sample of the typical modules that we offer at the date of publication but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. This prospectus may be updated over the duration of the course, as modules may change due to developments in the curriculum or in the research interests of staff.

Alongside other modules, a major feature is a research project which may be lab, bioinformatics or literature based. You’ll be provided with a list of topics to choose from, allowing you to develop a project in an area that interests you.

*The year 3 Biochemistry modules are currently being revised due to the rapid advances in the exciting field of biochemistry.

Core modules

Research Project

This module enables you to experience contemporary research methods first-hand. There will be at least three options available, including: (1) performing a laboratory-based research project on a topic related to the interests of a member of staff and producing a dissertation, (2) producing a group lab-project with open-ended aims and outcomes, to be decided by the group, including the design and conduct of the experiment with a dissertation, or (3) selecting a topic of interest to you and a member of staff, and producing an in-depth literature survey on the knowledge state of the topic decided upon. There will two days a week of research project work.

Gene Regulation
Examines the mechanisms through which eukaryotic genes are expressed and regulated, with emphasis placed on recent research on transcriptional control in yeast and post-transcriptional control in eukaryotes. Studying this module will include having three hours of lectures per week.

Optional modules

Human Variation
Examines genetic variation in humans, including variation at the DNA level, and the study of human population history using genetic methods. Around three hours per week will be spent within lectures studying this module.
Conservation Genetics
Consider the genetic effects of reduced population size, especially relating to the conservation of endangered species. You will study topics including genetic drift and inbreeding in depth, from theoretical and practical standpoints. You will spend around one and a half hours per week in lectures studying this module, plus a two and a half hour computer practical.
Cancer Biology
Examine a selection of acquired and inherited cancers, and develop an understanding of the role of the genes involved and how they can be analysed. To study for this module you will have a two- or three-hour lecture once per week.
Advanced Developmental Biology
You will consider the molecular mechanisms underlying stem cell function during embryogenesis and adulthood. This will involve studies of regeneration and repair of tissues and pluripotency. You will have one two-hour lecture per week in this module. 
Population Genetics
You will consider the history and practice of population genetics research, with a focus on a quantitative approach to the subject, with training in problem-solving skills. You will spend around two hours within lectures per week studying this module, plus a two-hour computer practical.
Pathogens
This module gives a detailed understanding of the genetics and biochemistry behind the properties of parasites and microorganisms that cause major human diseases in the present day. You will have a three-hour lecture once per week for this module.
Molecular Evolution

During this module you will examine the ways in which DNA and protein sequences are used to investigate evolutionary relationships among organisms. You will study topics including the techniques of sequence comparison and the construction of evolutionary trees. You will spend three hours of lectures per week plus a total of two three-hour practicals in this module.

Ageing, Sex and DNA Repair
Examine the molecular causes of the ageing and malignant transformations of somatic cells that are observed during a single lifespan, and gain an understanding of the necessity to maintain the genome intact from one generation to the next. Around three hours per week will be spent within lectures studying this module.
Biochemistry of Cancer

Study modern ideas surrounding tumourigenesis and tumour progression. The first part of the course covers our current understanding of the molecular basis of tumour progression. Following lectures will focus both on research into the fundamentals of cancer biology and the biochemical basis for the treatment of patients with cancer.

Molecular Microbiology and Infections

This module focuses on the molecular biology that drives the fundamental principles behind the survival of microorganisms and their interaction with humans.

Lectures will discuss the interaction between the host and pathogens and how they drive the mechanisms of infection and immunity.

There will be two hours of lectures a week.

Signal Transduction
In this module you will examine the molecular hardware and operational concepts used by eukaryotic cells to govern their growth, proliferation and phenotypic development. You will study how cells respond to their environment and communicate via the exchange of signalling factors that bind to specific target receptors. There will be two hours of lectures a week.
Molecular Diagnostics and Therapeutics
This module covers the use of various biochemical and molecular biological analytical techniques employed in clinical diagnosis, as well as the development of new molecular therapies based on modern biochemical and molecular biological techniques. By the end of the module you will understand the scientific basis behind a variety of molecular medical diagnostics and the methods for the development of new molecular therapies. The module is assessed by a two-hour essay based exam. 
Bioinformatics and Computational Biology

This course aims to explain the background and rationale for the development of bioinformatics and computational biology. It will reveal the scope and role of bioinformatics resources and how they underpin scientific research globally, and illustrate the expedience of bioinformatics tools in molecular and cellular biochemistry research. Students will gain direct experience of using bioinformatics tools to process and interpret biological data

Molecular Aspect of Neurodegeneration
Molecular Aspects of Diabetes and Obesity
RNA Biology and CRISPR Technology
Cell and Molecular Immunology
The Dynamic Cell
Life History of Proteins
The above is a sample of the typical modules that we offer at the date of publication but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. This prospectus may be updated over the duration of the course, as modules may change due to developments in the curriculum or in the research interests of staff.

Fees and funding

UK students

£9,250
Per year

International students

Confirmed July 2020*
Keep checking back for more information
*For full details including fees for part-time students and reduced fees during your time studying abroad or on placement (where applicable), see our fees page.

EU tuition fees and funding options for courses starting in 2021/22 have not yet been confirmed by the UK government. For further guidance, check our Brexit information for future students.

Additional costs

As a student on this course, you should factor some additional costs into your budget, alongside your tuition fees and living expenses. You should be able to access most of the books you’ll need through our libraries, though you may wish to purchase your own copies.

Scholarships and bursaries

The University of Nottingham offers a wide range of bursaries and scholarships. These funds can provide you with an additional source of non-repayable financial help. For up to date information regarding tuition fees, visit our fees and finance pages.

Home students*

Over one third of our UK students receive our means-tested core bursary, worth up to £1,000 a year. Full details can be found on our financial support pages.

* A 'home' student is one who meets certain UK residence criteria. These are the same criteria as apply to eligibility for home funding from Student Finance.

International/EU students

We offer a range of Undergraduate Excellence Awards for high-achieving international and EU scholars from countries around the world, who can put their Nottingham degree to great use in their careers. This includes our European Union Undergraduate Excellence Award for EU students and our UK International Undergraduate Excellence Award for international students based in the UK.

These scholarships cover a contribution towards tuition fees in the first year of your course. Candidates must apply for an undergraduate degree course and receive an offer before applying for scholarships. Check the links above for full scholarship details, application deadlines and how to apply.

Careers

On completion of the course, you will have developed a thorough understanding of the fundamental aspects of cell biology, biochemistry, and genetics.

Your research skills will be at a level that allows you to compete for the best postgraduate positions. Throughout the course you will have built up a range of transferable skills in presentation, interpretation and criticism of scientific data. These are all skills valued by employers.

Recent graduate destinations include:

  • Cambridge Bioscience: technical sales (medical research)
  • EY: audit trainee
  • Essex and Suffolk Water: water quality scientist
  • Inpharmation: business development consultant (pharmaceuticals)
  • NHS: biomedical scientist
  • Retroscreen Virology Ltd: project administrator (medical research)
  • Succinct: assistant editor (media and communications)
  • Vectura: scientist (pharmaceutical industry)

Find out more about the career options available to biochemistry graduates, including recent Nottingham graduate destinations by visiting our careers webpage

Average starting salary and career progression

96.5% of undergraduates in the School of Life Sciences secured work or further study within six months of graduation. £20,000 was the average starting salary, with the highest being £41,600.*

* Known destinations of full-time home undergraduates who were available for employment, 2016/17. Salaries are calculated based on the median of those in full-time paid employment within the UK. 

Studying for a degree at the University of Nottingham will provide you with the type of skills and experiences that will prove invaluable in any career, whichever direction you decide to take.

Throughout your time with us, our Careers and Employability Service can work with you to improve your employability skills even further; assisting with job or course applications, searching for appropriate work experience placements and hosting events to bring you closer to a wide range of prospective employers.

Have a look at our careers page for an overview of all the employability support and opportunities that we provide to current students.

The University of Nottingham is consistently named as one of the most targeted universities by Britain’s leading graduate employers (Ranked in the top ten in The Graduate Market in 2013-2020, High Fliers Research).

Dummy placeholder image

Related courses

The University has been awarded Gold for outstanding teaching and learning

Teaching Excellence Framework (TEF) 2017-18

Disclaimer

This online prospectus has been drafted in advance of the academic year to which it applies. Every effort has been made to ensure that the information is accurate at the time of publishing, but changes (for example to course content) are likely to occur given the interval between publishing and commencement of the course. It is therefore very important to check this website for any updates before you apply for the course where there has been an interval between you reading this website and applying.