Triangle Skip to content
Exit nav

Course overview

You'll be taught by academic staff from the School of Chemistry and the School of Physics and Astronomy. They will feed your curiosity and develop your approach to independent learning. You may even recognise some of our staff from the popular Periodic Videos and Sixty Symbols YouTube channels.

We are ranked 11th for Chemistry in the UK (Complete University Guide).

This course focuses on the overlap between the established disciplines of chemistry and physics. Optional modules on topics such as green chemistry, nanoscale and lasers in chemistry allow you to tailor your degree to a specialist field.

Why choose this course?

  • Accredited by The Institute of Physics
  • 11th for chemistry in the UK (Complete University Guide 2021)
  • Choose from a range of optional modules that interest you
  • Small-group tutorials support your learning
  • Put theory into practice in our modern labs and facilities
  • Gold-rated teaching by the Teaching Excellence Framework

Entry requirements

All candidates are considered on an individual basis and we accept a broad range of qualifications. The entrance requirements below apply to 2021 entry.

UK entry requirements
A level offer AAB, including maths, physics and chemistry.
Required subjects
  • GCSE Mathematics at grade 4 (C) (or equivalent)
  • GCSE English at 4 (C) or above
IB score 34 (6 in maths at Higher Level plus 6, 5, in physics and chemistry in any order with both at Higher Level preferred)

A levels

  • AAB at A level including  maths, physics and chemistry.
  • Typical offers will vary depending on the A level subjects offered in addition to chemistry.
  • Applicants taking A level biology, chemistry and/or physics are also required to pass the practical element of assessment (where it is assessed separately).

GCSEs

  • Mathematics at grade 4 (C) (or equivalent)
  • Plus GCSE in English at 4 (C) or above

Foundation progression options

Applicants who are not eligible for direct entry to undergraduate study may be able to apply for a foundation course. Find out more at nottingham.ac.uk/foundationcourses

Learning and assessment

How you will learn

Teaching methods

  • Computer labs
  • Lab sessions
  • Lectures
  • Tutorials
  • Workshops

How you will be assessed

The academic year is divided into two semesters and you will complete 120 credits of study per year.

Your final degree classification will be based on marks gained for your second and subsequent years of study. Year two is worth 33% with year three worth 67%.

Assessment methods

  • Coursework
  • Lab reports
  • Research project
  • Written exam

Contact time and study hours

There are typically 10 lectures in addition to 8 to 10 hours of laboratory classes per week.

You will be assigned a personal tutor who will support you through your studies and help you make the most of the opportunities available at Nottingham. Your personal tutor will guide your personal and academic development, offering you help, encouragement and guidance.

Core modules are typically delivered by professors or associate professors. Some study skills modules may be taught by PhD students.

Study abroad

A study abroad opportunity isn’t offered on this course. If you are interested in studying abroad, you may want to look at the Chemistry with an International Study Year MSci.

Students who choose to study abroad are more likely to achieve a first-class degree and earn more on average than students who did not (Gone International: Rising Aspirations report 2016/17).

Year in industry

A placement year isn't offered on this course. If this is something you are interested in you may want to look at Chemistry with Year in Industry MSci.

An industrial year can improve your employability.

A report by High Fliers in 2019 found that over a third of recruiters who took part in their research said that graduates who have no previous work experience at all are unlikely to be successful during the selection process for their graduate programmes.

Modules

In the first year you will study introductory chemistry, physics and mathematics modules.

You will take practical chemistry classes in our teaching laboratories and a special module on data analysis and scientific computing.

Fundamental Chemistry Theory and Practical

This module shows how trends in chemical properties can be related to the structure of the Periodic Table and rationalise descriptive inorganic chemistry. 

To provide a fundamental understanding of the basics of organic chemistry, including nomenclature, molecular structure and bonding, stereochemistry and the chemical reactivity of common functional groups and reaction types through an understanding of their electronic properties. 

To provide an introduction to fundamental physical aspects of chemistry, which underpins all areas of Chemistry - emphasis will be placed on being able to apply knowledge, especially in solving problems. 

To introduce a range of chemical techniques appropriate to the study of inorganic, organic and physical chemistry at first year level, which will act as a foundation for more advanced work in subsequent years.

From Newton to Einstein
This module aims to provide students with a rigorous understanding of the core concepts of physics at an introductory level. The module underpins all other physics modules in all years.
Computing For Physical Science

You’ll receive training in basic computing techniques using Python, and will be introduced to their use in solving physical problems.

You’ll spend two hours in computer classes and a one hour lecture each week. 

Basic Mathematical Methods for Physics

This course will provide an introduction to the basic mathematical techniques required for your course:

  • Plane geometry
  • Calculus of a single variable
  • Complex numbers
  • Ordinary differential equations
  • Calculus of several variable including partial derivatives and surface and volume integrals
  • Matrix algebra and eigenvalues

Optional modules

Introduction to Green Chemistry and Processing

In this module you’ll look at green chemistry in its broadest sense, covering the fundamental concepts and chemistry involved in making chemical processes cleaner and more environmentally benign.

You’ll spend one hour per week in lectures, seminars and workshops over the whole year studying this module.

Frontiers in Chemistry

This module will introduce you to selected topics at the forefront of current research in chemistry from a physical chemistry perspective.

Example topics include:

  • nanochemistry and its applications
  • energy generation and storage technologies
  • chemistry in the digital age
  • the chemistry of ions
  • the application of advanced photon sources
The above is a sample of the typical modules we offer but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. Modules may change or be updated over the duration of the course due to a number of reasons such as curriculum developments or staffing changes. Please refer to the module catalogue for the latest information on available modules.

In the second year, lectures will concentrate on physical chemistry, spectroscopy, quantum mechanics and electromagnetic fields. There are laboratory classes in both chemistry and physics.

There is a choice of optional modules, covering specialised topics such as nanotechnology and analytical chemistry.

Core modules

Core Laboratory Work

This module builds on the practical, analytical and communication skills developed in the first year and introduces experiments across the range of chemistry, based on your second year theory modules.

You’ll spend around 10 hours per week in practicals for this module. 

Intermediate Inorganic Chemistry
This module aims to survey the classical and new chemistry of the main group elements. To use group theory as a tool in the analysis of vibrational spectra in inorganic chemistry. To give a concise introduction to the organometallic chemistry of the transition metals. To use multinuclear NMR spectroscopy as a tool for the characterisation of molecules.
Energy, Spectroscopy and Solid State Chemistry

In this module you'll study  the physical principles underlying chemical phenomena, with emphasis on energy, quantum mechanics and spectroscopy. You'll also be introduced to solid-state chemistry, including the structure, characterisation, energetics and the band theory of solids.  

You’ll attend two hours of lectures each week in this module. 

The Quantum World

This module will provide an introduction to the theory and elementary applications of quantum mechanics, a theory that is one of the key achievements of 20th-century physics.

Quantum mechanics is an elegant theoretical construct that is both beautiful and mysterious. Some of the predictions of quantum mechanics are wholly counter-intuitive and there are aspects of it that are not properly understood but it has been tested experimentally for over 50 years and, wherever predictions can be made, they agree with experiment.

Classical Fields

In the module From Newton to Einstein, you learnt about the idea of a field a quantity which is defined at every point in space. In this module, the description of fields will be extended by introducing the mathematics of vector calculus.

The module will begin with an introduction to vector calculus, illustrated in the context of the flow of ideal (non-viscous) fluids.

The math­ematics will then be used to provide a framework for describing, understanding and using the laws of electromagnetism. We discuss how electric and magnetic fields are related to each other and to electrical charges and electrical currents. The macroscopic description of electric fields inside dielectric materials and magnetic fields inside magnetizable materials will be described, including the boundary conditions that apply at material interfaces.

The last section of the module will discuss Maxwells equations of electrodynamics and how they lead to the vector wave equation for electromagnetic waves.

Experimental Techniques and Instrumentation

In this module students will receive:

  • an introduction to the the basic techniques and equipment used in experimental physics
  • training in the analysis and interpretation of experimental data
  • a basic practical introduction to geometrical and physical optics
  • opportunities to observe phenomena discussed in theory modules
  • training in the skills of record keeping and writing scientific reports

Optional modules

Principles of Analytical Chemistry

You’ll be introduced to the principles of analytical chemistry, including the principal types of instrumentation used and the statistical treatment of analytical results.

You’ll attend two lectures each week studying this module.

Force and Function at the Nanoscale

You’ll be given an overview of how forces at the nanoscale are different to those observed in macroscopic systems and will consider how they can be exploited in nanometre-scale processes and devices.

You’ll focus on the physical basis and measurement of forces operating on the nanoscale, considering van der Waals, electrostatic, hydrophobic and hydrophilic interactions.

You’ll spend around three hours per week in lectures and workshops studying this module.

Sustainable Chemistry

This module covers material related to developing a more sustainable approach to chemistry. You will learn what constitutes sustainable chemistry, the significance of new technologies such as synthetic biology, and recognise the problems in achieving sustainability.

The above is a sample of the typical modules we offer but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. Modules may change or be updated over the duration of the course due to a number of reasons such as curriculum developments or staffing changes. Please refer to the module catalogue for the latest information on available modules.

You will study advanced modules in core physics and chemistry.

A final research project will apply your theoretical, computational and experimental techniques to an area of your choice.

Core modules

Chemical Bonding and Reactivity

To provide a fundamental understanding of molecular structure and of the requirements for reactivity.

To introduce modern electronic structure theory and demonstrate how it can be applied to determine properties such as molecular structure, spectroscopy and reactivity.

Solids, Interfaces and Surfaces

This course aims to teach the relationship between structure and properties of solids, structure of Solids and characterisation.

It aims to teach a general introduction to Interfaces and Surfaces.

Fourier Methods

You’ll be introduced to general methods for the discussion of wave propagation, specifically methods for the solution of differential equations and Fourier methods.

You’ll spend around six hours each week in lectures and workshops for this module. 

Atoms, Photons and Fundamental Particles

This module will introduce students to the physics of atoms, nuclei and the fundamental constituents of matter and their interactions. The module will also develop the quantum mechanical description of these.

Topics to be covered are:

  • Approximation techniques first order perturbation theory, degeneracies, second order perturbation theory, transition rates, time-dependent perturbation theory, Fermi's golden rule
  • Particle Physics protons and neutrons, antiparticles, particle accelerators and scattering experiments, conservation laws, neutrinos, leptons, baryons and hadrons, the quark model and the strong interaction, weak interactions, standard model
  • Introduction to atomic physics review of simple model of hydrogen atom, Fermi statistics and Pauli principle, aufbau principle, hydrogenic atoms, exchange, fine structure and hyperfine interactions, dipole interaction, selection rules and transition rates
  • Lasers optical polarization and photons, optical cavities, population inversions, Bose statistics and stimulated emission, Einstein A and B coefficients
  • Nuclear Physics Radioactivity, decay processes, alpha, beta and gamma emission, detectors, stability curves and binding energies, nuclear fission, fusion, liquid drop and shell models.
Introduction to Solid State Physics
This module will provide a general introduction to solid state physics. Topics covered include:
  • Bonding nature of chemical bonds, thermodynamics of solid formation
  • Crystal structures description of crystal structures, k-space, reciprocal lattice, Bragg diffraction, Brillouin zones
  • Nearly-free electron model - Bloch's theorem, band gaps from electron Bragg scattering, effective masses
  • Band theory Fermi surfaces, qualitative picture of transport, metals, insulators and semiconductors
  • Semiconductors - doping, inhomogeneous semiconductors, basic description of pn junction
  • Phonons normal modes of ionic lattice, quantization, Debye theory of heat capacities, acoustic and optical phonons
  • Optical properties of solids absorption and reflection of light by metals, Brewster angle, dielectric constants, plasma oscillations
  • Magnetism- Landau diamagnetism, paramagnetism, exchange interactions, Ferromagnetism, antiferromagnetism, neutron scattering, dipolar interactions and domain formation, magnetic technology
Physics Project

You’ll carry out a project within the areas of chemical and molecular physics, which may be experimental or theoretical in nature.

Spending around two hours per week in lectures and tutorials, you’ll work in pairs to plan your project under the guidance of a project supervisor.

Advanced Laboratory Techniques

This course aims to teach advanced experimental techniques in chemistry.

To provide experience in the recording, analysis and reporting of physical data.

To put into practice the methods of accessing, assessing and critically appraising the chemical literature.

Chemistry and Molecular Physics Literature and Communication Skills

You’ll undertake a literature review on a selected topic in the area of chemistry and molecular physics, presenting your work as a written report.

You’ll also develop your communication skills through group work, presentations and writing for the general public.

You’ll spend around two hours per week in workshops for this module. 

Optional modules

Lasers in Chemistry

A general introduction to lasers, including laser radiation and its properties will be given, leading to why lasers have such widespread uses in Chemistry.

The bulk of the module is devoted to selected applications, which will include some of:

  • atmospheric measurements
  • combustion
  • photochemistry and synthesis
  • chemical kinetics
  • spectroscopic studies of isolated molecules (stable and reactive)
  • studies of van der Waals complexes
  • studies of small metal clusters and nanoparticles
  • time-resolved studies
Bioinorganic and Metal Coordination Chemistry

The aim of this module is to provide you with an understanding of coordination chemistry in the context of macrocyclic, supramolecular and bioinorganic chemistry and its applications in metal extraction and synthesis.

You will gain an appreciation of the importance of metals in biological systems, and be able to explain the relationship between the structure of the active centres of metallo-proteins and enzymes and their biological functions.

The module is assessed by a two-hour written exam.

Catalysis
This module aims to provide a framework for understanding the action of heterogeneous catalysts in terms of adsorption/desorption processes and for understanding catalyst promotion in terms of chemical and structural phenomenon and also describes a wide variety of homogeneous catalytic processes based on organo-transition metal chemistry.
Topics in Inorganic Chemistry
This module covers inorganic mechanisms and the overarching fundamental principles of greener and sustainable chemistry as applied to processes, inorganic reaction mechanisms, and discussion on the theme of greener and sustainable chemistry
The above is a sample of the typical modules we offer but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. Modules may change or be updated over the duration of the course due to a number of reasons such as curriculum developments or staffing changes. Please refer to the module catalogue for the latest information on available modules.

Fees and funding

UK students

£9,250
Per year

International students

To be confirmed in 2020*
Keep checking back for more information
*For full details including fees for part-time students and reduced fees during your time studying abroad or on placement (where applicable), see our fees page.

If you are a student from the EU, EEA or Switzerland starting your course in the 2021/22 academic year, you will pay international tuition fees.

This does not apply to Irish students, who will be charged tuition fees at the same rate as UK students. UK nationals living in the EU, EEA and Switzerland will also continue to be eligible for ‘home’ fee status at UK universities until 31 December 2027.

For further guidance, check our Brexit information for future students.

Additional costs

As a student on this course, you should factor some additional costs into your budget alongside your tuition fees and living expenses, including:

  • scientific calculator
  • model kit (optional)

You should be able to access most of the books you’ll need through our libraries, though you may wish to purchase your own copies.

Due to our commitment to sustainability, we don’t print lecture notes but these are available digitally. You will be given £5 worth of printer credits a year. You are welcome to buy more credits if you need them. It costs 4p to print one black and white page.

Personal laptops are not compulsory as we have computer labs that are open 24 hours a day but you may want to consider one if you wish to work at home.

Scholarships and bursaries

The University of Nottingham offers a wide range of bursaries and scholarships. These funds can provide you with an additional source of non-repayable financial help.

Home students*

Over one third of our UK students receive our means-tested core bursary, worth up to £1,000 a year. Full details can be found on our financial support pages.

* A 'home' student is one who meets certain UK residence criteria. These are the same criteria as apply to eligibility for home funding from Student Finance.

International/EU students

We offer a range of Undergraduate Excellence Awards for high-achieving international and EU scholars from countries around the world, who can put their Nottingham degree to great use in their careers. This includes our European Union Undergraduate Excellence Award for EU students and our UK International Undergraduate Excellence Award for international students based in the UK.

These scholarships cover a contribution towards tuition fees in the first year of your course. Candidates must apply for an undergraduate degree course and receive an offer before applying for scholarships. Check the links above for full scholarship details, application deadlines and how to apply.

Careers

Our graduates can find roles in the pharmaceutical, chemical, food and drink, and energy sectors. This course will develop your skills in; practical and theoretical chemistry, data-analysis and problem-solving. These skills are also valuable for careers in finance, education and the media.

Graduate destinations

  • Boots
  • Cancer Research
  • GlaxoSmithKline
  • HSBC
  • Intellectual Property Office
  • NHS
  • Unilever

Average starting salary and career progression

89.3% of undergraduates from the Department of Civil Engineering secured graduate level employment or further study within 15 months of graduation. The average annual salary for these graduates was £25,886.*

* HESA Graduate Outcomes 2020. The Graduate Outcomes % is derived using The Guardian University Guide methodology. The average annual salary is based on graduates working full-time within the UK.

Studying for a degree at the University of Nottingham will provide you with the type of skills and experiences that will prove invaluable in any career, whichever direction you decide to take.

Throughout your time with us, our Careers and Employability Service can work with you to improve your employability skills even further; assisting with job or course applications, searching for appropriate work experience placements and hosting events to bring you closer to a wide range of prospective employers.

Have a look at our careers page for an overview of all the employability support and opportunities that we provide to current students.

The University of Nottingham is consistently named as one of the most targeted universities by Britain’s leading graduate employers (Ranked in the top ten in The Graduate Market in 2013-2020, High Fliers Research).

Institute of Physics

The Institute of Physics accredits bachelor and integrated masters degree programmes for the purposes of the professional award of Chartered Physicist. Chartered Physicist requires an IOP accredited degree followed by an appropriate period of experience during which professional skills are acquired. 

An accredited bachelor degree partially fulfils the academic requirement for Chartered Physicist status. Further study to masters level, or equivalent work-based experience, is required to achieve Chartered Physicist.

Dummy placeholder image

Related courses

The University has been awarded Gold for outstanding teaching and learning

Teaching Excellence Framework (TEF) 2017-18

Disclaimer

This online prospectus has been drafted in advance of the academic year to which it applies. Every effort has been made to ensure that the information is accurate at the time of publishing, but changes (for example to course content) are likely to occur given the interval between publishing and commencement of the course. It is therefore very important to check this website for any updates before you apply for the course where there has been an interval between you reading this website and applying.