You will work on a major research project in an area of your choice. The project will develop not only your practical ability, team working and problem-solving skills, but also help with future career opportunities.
MSci Chemistry Research Project
You will be welcomed into one of the research groups within the School of Chemistry to undertake an in-depth research project.
All projects will involve a review of relevant published work and the planning and execution of a research topic under the guidance of two supervisors.
Natural Science and CMP Physics Project
The module will consist of a project the aim of which is to solve a practical or theoretical problem.
Practical problems will be undertaken in research laboratories and typically students work in groups on their project.
Functional Medical Imaging
The techniques for magnetic resonance imaging (MRI) and spectroscopy (MRS) are explored. The course aims to introduce the brain imaging technique of functional magnetic resonance imaging (fMRI), giving an overview of the physics involved in this technique. The electromagnetic techniques of electroencephalography (EEG) and magnetoencephalography (MEG) will then be outlined, and the relative advantages of the techniques described.
Semiconductor Physics
This module introduces you to the physics and applications of Semiconductors. This module includes detailed overview of the Semiconductors past, present and future, and provides skills and knowledge essential for a future Semiconductor researcher or engineer.
This module introduces you to the physics and applications of Semiconductors. Semiconductors are key materials of the current Information Age. They enabled most of the devices and technologies we use everyday, such as computers, internet, mobile phones. Semiconductors help us to mitigate global warming, data theft, end of the Moore’s law and other global challenges.
This module includes detailed overview of the Semiconductors past, present and future, and provides skills and knowledge essential for a future Semiconductor researcher or engineer.
You’ll study:
- Physics and applications of conventional semiconductor materials and devices, for example p-n diodes and field-effect transistors
- Physics and applications of novel semiconductor materials, quantum materials, nanostructures, low dimensional materials, such as graphene and quantum dots
- Current and future semiconductor challenges and technologies, such as efficient solar cells, ultrasensitive phone cameras and quantum computers.
Quantum Dynamics
Understanding the dynamics of quantum systems is crucial, not just for describing the fundamental physics of atoms, but also for the development of exciting new quantum-based technologies. This module will equip you with the key theoretical concepts and methods needed to explore how quantum systems evolve with time.
Understanding the dynamics of quantum systems is crucial, not just for describing the fundamental physics of atoms, but also for the development of exciting new quantum-based technologies. This module will equip you with the key theoretical concepts and methods needed to explore how quantum systems evolve with time.
You’ll study:
- Connections between the dynamics of quantum systems and that of more familiar classical ones
- When (and how) to use approximations that allow complex problems to be made much simpler
- The extent to which the evolution of quantum states can be controlled
- How to put theory into practice using one of IBM’s prototype quantum computers.
Advanced Physical Chemistry
Building on your knowledge from the previous years' modules in inorganic chemistry, you’ll study topics including:
- electron transfer pathways
- inorganic chemistry in biological systems
- the principles of molecular and supramolecular photochemistry
- applications of inorganic photochemistry
- photocatalysis
You’ll attend two lectures each week in this module.
Inorganic and Materials Chemistry
In this module you will explore inorganic photochemistry, electron transport pathways, molecular and supramolecular photochemistry, and artificial photosynthesis together with the principles that underpin green chemistry.
You will attend two lectures per week in this module.
Molecular Interactions and Supramolecular Assembly
In this module you’ll learn about the importance of intermolecular forces, across a wide cross-section of subject areas from biology through to supramolecular chemical systems.
You'll study molecular organisation, assembly and recognition in biological and supramolecular systems.
In addition to appreciating the rich chemistry underlying self-assembling systems, you'll learn about the phenomena that impact on the properties of materials and important interactions in biology.
You'll attend two lectures per week in this module.
The Politics, Perception and Philosophy of Physics
In this module you'll gain an appreciation of the broad societal impact of physics (and science in general). You'll be introduced to the politics surrounding science policy (on, e.g., global warming/renewable energy R&D) and research funding. You'll also explorre some of the key ideas in the philosophy of physics and science, particularly as they relate to public perception of scientific research.
The above is a sample of the typical modules we offer but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. Modules (including methods of assessment) may change or be updated, or modules may be cancelled, over the duration of the course due to a number of reasons such as curriculum developments or staffing changes. Please refer to the
module catalogue for information on available modules. This content was last updated on