Autonomous Robotic Systems
This module introduces you to the computer science of robotics, giving you an understanding of the hardware and software principles appropriate for control and localisation of autonomous mobile robots. A significant part of the module is laboratory-based, utilising physical robotic hardware to reinforce the theoretical principles covered. You will cover a range of topics including basic behavioural control architectures, multi-source data aggregation, programming of multiple behaviours, capabilities and limitations of sensors and actuators, and filtering techniques.
Designing Sensor-Based Systems
You will gain knowledge and hands-on experience of design and technical development of sensor-based systems. You will learn about the human-computer interaction challenges that need to be considered when creating ubiquitous computing systems along with strategies for addressing them, so as to create effective, appropriate and compelling user experiences.
Malware Analysis
This module looks at the practice of malware analysis, looking at how to analyse malicious software to understand how it works, how to identify it, and how to defeat or eliminate it.
You will look at how to set up a safe environment in which to analyse malware, as well as exploring both static and dynamic malware analysis. Although malware takes many forms, the focus of this module will primarily be on executable binaries. This will cover object file formats and the use of tools such as debuggers, virtual machines, and disassemblers to explore them. Obfuscation and packing schemes will be discussed, along with various issues related to Windows internals.
The module is practical with encouragement to safely practice the skills you're taught.
Topical Trends in Cyber Security
This module involves discussing current topics relating to computer security. Each week, as individuals or as a group, you will make a presentation on an assigned topic in computer security followed by a discussion. You will meet with a member of staff to discuss and plan the form of the presentation. You'll also prepare questions for the audience and write a concise (10 page) summary of the material.
The aim of the module is to gain a deeper understanding of the important topics in computer security. You'll learn how to summarise research and present it to a peer audience.
Advanced Algorithms and Data Structures
You'll study the theory used in the design and analysis of advanced algorithms and data structures. Topics covered include string algorithms (such as for string matching, longest common subsequence), graph algorithms (such as for minimum cuts and maximum flows, and Google's pagerank algorithm), advanced data structures (such as Fibonacci heaps and Bloom filters), and randomised search heuristics (evolutionary algorithms). You'll learn all the necessary probability theory will be introduced, including random variables and concentration inequalities.
The theory is practiced in weekly labs where we learn how to implement the algorithms and data structures as functional and imperative programs (using the languages Haskell and C), and apply these to solve large instances of real-world problems.
Advanced Computer Networks
This module will provide you with an advanced knowledge of computer communications networks, using examples from all-IP core telecommunications networks to illustrate aspects of transmission coding, error control, media access, internet protocols, routing, presentation coding, services and security.
The module will describe Software Defined Networks (SDNs) and provide examples of using them to enable very large scale complex network control. It will also provide advanced knowledge of various routing and query protocols in:
- Ad Hoc Networks
- Mobile Ad Hoc Networks (MANETs)
- Vehicular Ad Hoc Networks (VANETs)
- Disconnection/Disruption/Delay Tolerant Networks (DTNs)
- impact of new networking developments, such as security risks, ethics, interception and data protection will be reflected and discussed systematically
Big Data Learning and Technologies
'Big Data' involves data whose volume, diversity and complexity requires new technologies, algorithms and analyses to extract valuable knowledge, which go beyond the normal processing capabilities of a single computer. The field of Big Data has many different faces such as databases, security and privacy, visualisation, computational infrastructure or data analytics/mining.
'Big Data' involves data whose volume, diversity and complexity requires new technologies, algorithms and analyses to extract valuable knowledge, which go beyond the normal processing capabilities of a single computer. The field of Big Data has many different faces such as databases, security and privacy, visualisation, computational infrastructure or data analytics/mining.
This module will provide the following concepts:
- Introduction to Big data: introducing the main principles behind distributed/parallel systems with data intensive applications, identifying key challenges: capture, store, search, analyse and visualise the data.
- SQL Databases vs. NoSQL Databases: understand the growing amounts of data; the relational database management systems (RDBMS); overview of Structured Query Languages (e.g. SQL); introduction to NoSQL databases; understanding the difference between a relational DBMS and a NoSQL database; Identifying the need to employ a NoSQL DB.
- Big Data frameworks and how to deal with big data: this includes the MapReduce programming model, as well as an overview of recent technologies (Hadoop ecosystem, and Apache Spark). Then, you will learn how to interact with the latest APIs of Apache Spark (RDDs, DataFrames and Datasets) to create distributed programs capable of dealing with big datasets (using Python and/or Scala)
- Finally, we will dive into the data mining and machine learning part of the course, including data preprocessing approaches (to obtain quality data), distributed machine learning algorithms and data stream algorithms. To do so, you will use the Machine learning library of Apache Spark (MLlib) to understand how some machine learning algorithms (e.g. Decision Trees, Random Forests, k-means) can be deployed at a scale.
Data Modelling and Analysis
This module will enable you to appreciate the range of data analysis problems that can be modelled computationally and a range of techniques that are suitable to analyse and solve those problems.
Topics covered include:
- basic statistics
- types of data
- data visualisation techniques
- data modelling
- data pre-processing methods including data imputation
- forecasting methods
- clustering and classification methods (decision trees, naīve bayes classifiers, k-nearest neighbours)
- data simulation
- model interpretation techniques to aid decision support
Spending around four hours each week in lectures and computer classes, appropriate software (eg. R, Weka) will be used to illustrate the topics you'll cover.
Design Ethnography
This module introduces you to the theory and practice of design ethnography.
You will cover a range of topics including:
- origins and evolution of ethnography
- foundations and nature of the ethnomethodological approach
- ethnographic analysis
- its relationship to systems design
- the perceived problems with the approach
Development Experience
Students taking part in activities relating to programming experience such as developing apps in their spare time, contributing to open source projects, or building things in hackathons may receive academic credit for showing they have experience and excellent development skills. The emphasis of this module is that you provide evidence of your significant extra-curricular software development experience. Students will only be able to register for this module with the approval of the convenor/school, once the material for assessment has been checked.
Fuzzy Logic and Fuzzy Systems
This module aims to provide a thorough understanding of fuzzy sets and systems from a theoretical and practical perspective.
Topics commonly include:
- type-1 fuzzy sets
- type-1 fuzzy logic systems
- type-1 fuzzy set based applications
- type-2 fuzzy sets
- type-2 fuzzy logic systems
- type-2 fuzzy set based applications.
You will also be exposed to some of the cutting-edge research topics in uncertain data and decision making, e.g., based on type-2 fuzzy logic as well as other fuzzy logic representations. You will develop practical systems and software in a suitable programming language.
Games
This module covers the history, development and state-of-the-art in computer games and technological entertainment.
You will gain an appreciation of the range of gaming applications available and be able to chart their emergence as a prevalent form of entertainment. You will study the fundamental principles of theoretical game design and how these can be applied to a variety of modern computer games.
In addition, you will study the development of games as complex software systems. Specific software design issues to be considered will include the software architecture of games, and the technical issues associated with networked and multiplayer games.
Finally, you will use appropriate software environments to individually develop a number of games to explore relevant theoretical design and practical implementation concepts.
Industrial Experience
Students taking part in activities relating to industrial experience in a computer science or software engineering enterprise may obtain academic credit for them. A full list of approved activities is available from the School Office. Activities will be related to demonstration of involvement in development of complex software in a team situation, subject to quality control procedures of an industrial or business practice. Evidence of working to and completing tasks relating to targets set by an employer and directly related to software development/programming will be required. Students will have undertaken an agreed number of hours on the activities, identified personal goals and targets in relation to these activities and maintained a reflective portfolio as a record of evidence of their competence and achievements. The nature of the activities undertaken will be subject to the approval of the module convenor before acceptance on the module.
Linear and Discrete Optimisation
This module provides an entry point to computational optimisation techniques, in particular for modelling and solving linear and discrete optimisation problems like diet optimisation, network flows, task assignment, scheduling, bin-packing, travelling salesmen, facility location, vehicle routing and related problems.
In this module, you will learn to interpret and develop algebraic models for a variety of real-world linear and discrete optimisation problems to then use powerful optimization software (linear, integer and mixed-integer solvers) to produce a solution.
The module covers topics such as:
- linear programming
- integer programming
- combinatorial optimisation
- modelling and optimisation software
- multi-objective optimisation
Optimisation technology is ubiquitous in today's world, for applications in logistics, finance, manufacturing, workforce planning, product selection, healthcare, and any other area where the limited resources must be used efficiently. Optimisation enables prescriptive analytics in order to support and automate decision-making.
Mixed Reality
This module focuses on the possibilities and challenges of interaction beyond the desktop. Exploring the 'mixed reality continuum' - a spectrum of emerging computing applications that runs from virtual reality (in which a user is immersed into a computer-generated virtual world) at one extreme, to ubiquitous computing (in which digital materials appear embedded into the everyday physical world - often referred to as the 'Internet of Things') at the other. In the middle of this continuum lie augmented reality and locative media in which the digital appears to be overlaid upon the physical world in different ways.
You will gain knowledge and hands-on experience of design and development with key technologies along this continuum, including working with both ubiquitous computing based sensor systems and locative media. You will learn about the Human-Computer Interaction challenges that need to be considered when creating mixed reality applications along with strategies for addressing them, so as to create compelling and reliable user experiences.
Group Programming Project
Students undertake a programming project for an external client in self-formed groups of two to four students under the supervision of an academic member of staff. The client, which can be a company, charity, research group etc., but not the supervisor, provides a problem that requires a sufficiently challenging piece of software to be developed. The client and project idea could be provided by the students or the supervisor. However, projects must have aspects that are relevant to each student's programme of study; eg, there needs to be an artificial intelligence (AI) aspect if any AI students are involved.
The main assessed outputs are the developed software, including any end-user documentation, along with a 5,000-word document that outlines the development, design and implementation of the software, highlighting the most interesting aspects. The software must be developed in a professional and systematic manner appropriate for the problem domain. The assessment is informed by a statement from the external client on how well the developed software addresses the problem. Additionally, each student submits an individual 5,000-word report explaining his or her own contributions and giving a critical appraisal of how the project went, including group dynamics and the contributions of others.
Individual Research Project
Students undertake a research project in computer science supervised by an academic member of staff. The topic should fall within the supervisor's research interests and must further be relevant to the student's programme of study; in particular, projects undertaken by artificial intelligence (AI) students must have a strong AI focus. The project may be proposed by either the supervisor or the student, and may be theoretical, empirical, or even of survey type depending on what is appropriate and feasible for the area and topic. Projects, however, must ultimately be agreed with the supervisor concerned.
The results from the project are to be distilled into a conference-format research paper, authored by the student and constituting the main assessed output. There may, however, be further deliverables as dictated by the nature of the project. Any such deliverables are to be submitted (electronically) as supplementary material. A revised version of the paper, possibly co-authored with the supervisor, may subsequently be submitted for publication to an external venue, such as a conference or journal, if the work is judged to be of sufficiently high standard.
Individual Programming Project
You will undertake a programming project relevant for AI for an External Client under the supervision of an academic member of staff.
The client, which can be a company, charity, research group etc., provides a problem that requires a sufficiently challenging piece of software to be developed. The client and project idea could be provided by the students or the supervisor. Each project must ultimately be agreed with the concerned Supervisor.
The main assessed outputs are the developed software, including any end-user documentation, along with a 15,000-word document that outlines the development, design and implementation of the software, highlighting the most interesting aspects.
The software must be developed in a professional and systematic manner appropriate for the problem domain.
The assessment is informed by a statement from the External Client on how well the developed software addresses the problem.
Programs, Proofs and Types
This module focuses on some of the fundamental mathematical concepts that underlie modern programming and programming languages emphasizing the role of types. We will use a dependently typed programming language/interactive proof system (eg Agda) to implement some concepts on a computer.
Example topics include
- basic lambda calculus
- operational semantics
- domain theory
- types, propositions as types and formal verification.
You will engage in a mix of lectures and working in the lab with an interactive proof system.
Project in Advanced Algorithms and Data Structures
This project involves a self-guided study of a selected advanced algorithm or data structure. The outcome of the project is an analysis and implementation of the algorithm or data structure, as well as an empirical evaluation, preferably on a real-world data set of significant size.
Schools Experience
Students taking part in approved activities, such as running code clubs in schools, organising school computing activity days, or becoming active STEM ambassadors, may receive academic credit for demonstrating they have actively contributed to the development of younger students. Students will have undertaken an agreed number of hours on the activities, identified personal goals and targets in relation to these activities and maintained a reflective portfolio as a record of evidence of their competence and achievements. Students will only be able to register for this module with the approval of the convenor/school, once the material for assessment has been discussed.
Simulation and Optimisation for Decision Support
This module offers insight into the applications of selected methods of decision support.
The foundations for applying these methods are derived from:
- Operations Research Simulation
- Social Simulation
- Data Science
- Automated Scheduling
- Decision Analysis
Throughout the module, you will become more competent in choosing and implementing the appropriate method for the particular problem at hand. You will spend five hours per week in lectures, workshops, and computer classes for this module.
Software Engineering Management
This module is part of the software engineering theme.
This module covers the following topics:
- management of the introduction of new software or IT systems
- software project management practices
- practical experience of use of an Agile software development project management process
- practical experience of use of Test Driven Development, pair programming and various approaches to software management tools, including the use of software versioning, project management planning tools and continuous integration and deployment