Mathematical Sciences
The main reason for my application to Nottingham to study maths was because of the opportunity to study abroad, which I succeeded in by studying at the University of Queensland.

Oli Douch, BSc Mathematics (International Study)
Studying mathematics at Nottingham

Our mathematics degrees encompass a variety of topics, ranging from the abstract ideas of algebra and number theory to financial applications of statistics and the mathematical modelling of biological phenomena.

Whether your particular interests lie in probability and statistics or in pure or applied mathematics, our staff are active researchers as well as lecturers, ensuring an extensive choice of modules enhanced by lively and relevant teaching.

Teaching quality
The school has a record to be proud of in terms of its teaching and research. Our lecturers have been awarded honours such as the Vice-Chancellor’s Medal and the Lord Dearing Award, which recognise the outstanding achievements of staff in enhancing your learning experience.

Research excellence
Our research interests inform and shape the third and fourth years of our courses, enabling you to nurture and develop an interest in one or more specialist areas within mathematics. The opportunity to explore advanced modules ensures a stimulating and dynamic study environment.

In 2018, a former PhD student from the school was awarded the Fields Medal, one of the most prestigious honours a mathematician can receive.

““Our purpose-built facilities, coupled with dedicated teaching and study support provide a fulfilling environment in which all students can develop and prosper”

Professor Paul Houston, Head of the School of Mathematical Sciences

Facilities
The mathematical sciences building offers both quiet study and group workrooms, a social area, breakout pods and a computer workroom. The nearby George Green Library also offers a range of study areas where you can access all the reference materials and books you need.

BSc or MMath?
Our BSc Mathematics course provides a broad mathematical education with flexibility in the final year to select from many specialist options. The MMath degree is an integrated masters qualification in which the additional year provides the opportunity for you to study your favourite topics in more depth and develop your research skills in a substantial dissertation. The MMath is excellent preparation for further study, such as a PhD, or a career requiring specialist mathematical skills.

If you choose to study the MMath your student loan will cover tuition fees and living costs for the additional year too (home/EU students only).

You can transfer between the three-year BSc Mathematics and the four-year MMath Mathematics during the first two years of either degree subject to the MMath progression requirements of 55% being achieved in the second year at the first attempt.

Our courses

<table>
<thead>
<tr>
<th>Degree title</th>
<th>UCAS code</th>
<th>Duration</th>
<th>A levels</th>
<th>IB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single honours</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSc Mathematics (International Study)</td>
<td>G104</td>
<td>4 years</td>
<td>A*AA/AAA/AB</td>
<td>36; 6 in maths at Higher Level</td>
</tr>
<tr>
<td>BSc Statistics</td>
<td>G300</td>
<td>3 years</td>
<td>A*AA/AAA/AB</td>
<td>36; 6 in maths at Higher Level</td>
</tr>
<tr>
<td>Major/minor honours</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSc Financial Mathematics</td>
<td>G120</td>
<td>3 years</td>
<td>A*AA/AAA/AB</td>
<td>36; 6 in maths at Higher Level</td>
</tr>
<tr>
<td>Joint honours</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSc Mathematics and Economics</td>
<td>GL11</td>
<td>3 years</td>
<td>A*AA/AAA</td>
<td>36; 6 in maths at Higher Level</td>
</tr>
</tbody>
</table>

Related courses
- BSc | MSci Mathematical Physics
- BSc | MSci Natural Sciences
- BSc | MSci Natural Sciences with International Study

English language requirements
IELTS 6.5 (no less than 6.0 in any element). For details of other English language tests and qualifications we accept, please see nottingham.ac.uk/go/alternatierequirements

If these grades are not met, English preparatory courses are available. Find out more at nottingham.ac.uk/cele

Optional placement year
Students can opt to undertake a year-long work placement in any field in the UK or overseas during their time at university.

The University also facilitates hundreds of shorter paid internship opportunities with Nottinghamshire-based businesses throughout the academic year. Undergraduates from the school have completed internships as Data Analysts, Digital Marketing Executives, Trainee Accountants, Data Scientists, Marketeers, Software Developers and Financial Analysts in a variety of organisations across the region through the nottingham.ac.uk/careers/students/work-experience/nottingham-internship-scheme

nottingham.ac.uk/ugstudy/mathematics
BSc | MMath Mathematics

Choose one of three courses in which mathematics is taken as a single subject.

The three-year BSc offers a broad education in mathematics with the ability to specialise. The four-year MMath includes a substantial dissertation together with more advanced study in a specialisation of your choice. The four-year BSc Mathematics (International Study) enables you to study mathematics-related subjects at an overseas university.

Key features
- Accredited by the Institute of Mathematics and its Applications
- Wide choice of modules across the variety of disciplines within mathematics
- Graduate with a named degree such as BSc or MMath Mathematics with Statistics
- Benefit from the opportunity on the BSc Mathematics or MMath Mathematics courses to spend a semester studying abroad

Year one
In the first year, you will study core mathematics material and also take foundation modules in the three main subject areas within mathematics, namely pure mathematics, applied mathematics, and probability and statistics.

Year two
During the second year, you will typically continue to study two of the three main mathematical subject areas, building on the foundations developed in the first year.

Your choices include a range of interdisciplinary modules, including the optional Professional Skills for Mathematicians module which allows you to gain experience in communication and learn what potential employers look for in graduate recruits. You will be able to select modules from outside mathematics in each year of study from year two onwards.

Year three
Specialise in one of the areas of pure mathematics, applied mathematics or probability and statistics. BSc students can choose modules more broadly if they wish. You may decide to take modules based on project work which help to develop essential skills for later employment. Project modules are optional for students on BSc courses but are required of students on the MMath course, as they provide essential preparation for the final-year dissertation on that course.

Year four (MMath only)
Select from a broad range of advanced optional modules, and write a dissertation, which accounts for one-third of your fourth year. You are required to specialise to some extent in one of the three main subject areas.

I was concerned that there was going to be a big jump from A-level mathematics to university level, but the school actively supports students by offering problem classes, tutorials and PASS groups in your first year. This allows you to ask questions outside of lectures and work through problems.

Lucy Edwards, BSc Mathematics

nottingham.ac.uk/ugstudy/mathematics

BSc Mathematics (International Study)

Years one, two and four are spent in Nottingham, while the third year is spent studying mathematics and related subjects overseas. The year abroad offers you an opportunity to widen your academic and personal experience beyond the three-year BSc Mathematics. Successful completion of this year demonstrates independence and flexibility, which are characteristics highly regarded by future employers.

Your overseas study placement can be spent either at an English-speaking university or with one of our European partners, with lectures in the language of the host country. Find out more about our partners at nottingham.ac.uk/studysabroad

You can apply for the year abroad during your second year. Places are competitive and depend on academic performance (60% minimum average) and a language qualification, where appropriate.

Typical modules

<table>
<thead>
<tr>
<th>Year one</th>
<th>Year two</th>
<th>Year three (year four for BSc Mathematics (International Study))</th>
<th>Year four (MMath only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical and Computational Foundations</td>
<td>Complex Functions</td>
<td>Advanced Quantum Theory</td>
<td>Advanced Stochastic Processes</td>
</tr>
<tr>
<td>Applied Mathematics</td>
<td>Introduction to Mathematical Physics</td>
<td>Applied Statistical Modelling</td>
<td>Algebraic Geometry</td>
</tr>
<tr>
<td>Calculus</td>
<td>Mathematical Analysis</td>
<td>Fluid Dynamics</td>
<td>Applied Nonlinear Dynamics</td>
</tr>
<tr>
<td>Foundations of Pure Mathematics</td>
<td>Modelling with Differential Equations</td>
<td>Game Theory</td>
<td>Black Holes</td>
</tr>
<tr>
<td>Linear Mathematics</td>
<td>Professional Skills for Mathematicians</td>
<td>Mathematical Finance</td>
<td>Complex Analysis</td>
</tr>
<tr>
<td>Mathematical Structures</td>
<td>Statistical Models and Methods</td>
<td>Mathematical Medicine and Biology</td>
<td>Mathematics Dissertation</td>
</tr>
<tr>
<td>Probability</td>
<td>Vector Calculus</td>
<td>Mathematics Project</td>
<td>Time Series and Forecasting</td>
</tr>
<tr>
<td>Statistics</td>
<td></td>
<td>Number Fields and Galois Theory</td>
<td>Topics in Biomedical Mathematics</td>
</tr>
</tbody>
</table>

Modules may change, for example due to curriculum developments. The above list is a sample of typical modules that we offer, not a definitive list. The most up-to-date information can be found on our website at nottingham.ac.uk/ugstudy/mathematics.
BSc Statistics

Data analysis and uncertainty modelling skills are in great demand among employers. Study core mathematics together with statistics, probability and applied mathematics.

The degree offers a broad and challenging modern curriculum with many optional modules available to study. Alongside this, the course provides the opportunity for statistical software skills to be nurtured and developed. The course provides excellent preparation for many careers as a statistician with the potential to be employed in fields ranging from biomedicine to business and finance.

Key features
- Designed to develop expertise in statistics, probability and related topics in applied mathematics
- Modules may be selected from outside mathematics in all three years
- Statistical software is used throughout the course
- Opportunity to spend a semester abroad

Year one
You will study core mathematics, alongside foundation modules in statistics, probability and applied mathematics. This will prepare you for in-depth study in statistics and related subjects in later years.

Year two
Combining three compulsory modules with your choice from a range of optional modules, you will continue to study statistics, probability and applied mathematics in more depth. Half of the year is exclusively devoted, through compulsory modules, to statistics, probability, and scientific computation. The remaining half of your modules can be chosen within a selected range of theoretical, applied, and cross-disciplinary topics.

Year three
You will choose from a wide range of advanced optional modules which focus mainly on statistics, probability and their applications. Two-thirds of this year covers a range of modules specifically selected for their relevance to modern statistical practice, such as multivariate analysis and time series models. In the remaining third of the year you will have the option of broadening your knowledge of mathematics with advanced theoretical and applied modules, and to work on other cross-disciplinary subjects.

I have enjoyed programming in the first year as I found it interesting learning to use various commands to solve problems. I am a part of the maths society (MathSoc) and I would recommend getting involved in as many societies as you can; you may end up being surprised by what you enjoy!

George Colyer, BSc Statistics

nottingham.ac.uk/ugstudy/mathematics

Typical modules

<table>
<thead>
<tr>
<th>Year one</th>
<th>Year two</th>
<th>Year three</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical and Computational Foundations</td>
<td>Differential Equations and Fourier Analysis</td>
<td>Applied Statistical Modelling</td>
</tr>
<tr>
<td>Applied Mathematics</td>
<td>Introduction to Scientific Computation</td>
<td>Coding and Cryptography</td>
</tr>
<tr>
<td>Calculus</td>
<td>Mathematical Analysis</td>
<td>Data Analysis and Modelling</td>
</tr>
<tr>
<td>Linear Mathematics</td>
<td>Modelling with Differential Equations</td>
<td>Mathematical Finance</td>
</tr>
<tr>
<td>Probability</td>
<td>Probability Models and Methods</td>
<td>Multivariate Analysis</td>
</tr>
<tr>
<td>Statistics</td>
<td>Professional Skills for Mathematicians</td>
<td>Optimization</td>
</tr>
<tr>
<td></td>
<td>Statistical Models and Methods</td>
<td>Scientific Computation and Numerical Analysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Statistical Inference</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stochastic Models</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Time Series Analysis</td>
</tr>
</tbody>
</table>

Modules may change, for example due to curriculum developments. The above list is a sample of typical modules that we offer, not a definitive list. The most up-to-date information can be found on our website at nottingham.ac.uk/ugstudy/mathematics
BSc Financial Mathematics

The financial world relies heavily on mathematics and on the skills of analytical reasoning and problem solving that a mathematical education offers.

Designed to help you to develop a thorough grounding in mathematics, this course also focuses on topics that are of particular relevance to finance, while at the same time enabling you to study a broad range of topics within finance itself.

Key features
- Accredited by the Institute of Mathematics and its Applications
- Approximately 75% of modules are dedicated to mathematics, with the remaining 25% spread across a range of finance and business topics
- Mathematical aspects of the course are oriented towards financial mathematics as well as probability and statistics - further modules can also be taken in other areas of mathematics
- No previous knowledge of finance, business or management studies is assumed
- Gain specific finance knowledge, but also mathematical techniques and skills suitable for a variety of careers in the financial world and elsewhere
- Opportunities to spend a semester studying abroad

Year one
Two-thirds of the first year is devoted to mathematics; you will study core mathematics as well as probability and statistics.

The remaining third of your first-year studies comprises modules devoted to financial topics such as microeconomics for business, financial accounting and business finance.

Year two
The majority of the year is devoted to mathematics. You will study modules that extend your expertise in probability and statistics, enhance your computational and numerical skills, and develop the more general skills that are important for careers in mathematics and finance. The remaining quarter is devoted to financial topics.

Year three
Half of the third year will comprise compulsory modules in mathematics and finance. In the remaining half of the year, you will choose optional modules in mathematics and finance, based on your interests. You will fine-tune the key skills and knowledge developed in your first two years.

Typical modules

<table>
<thead>
<tr>
<th>Year one</th>
<th>Year two</th>
<th>Year three</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical and Computational Foundations</td>
<td>Corporate Finance</td>
<td>Coding and Cryptography</td>
</tr>
<tr>
<td>Business Finance</td>
<td>Differential Equations and Fourier Analysis</td>
<td>Financial Analysis</td>
</tr>
<tr>
<td>Calculus</td>
<td>Economic Principles</td>
<td>Financial Economics</td>
</tr>
<tr>
<td>Financial Accounting</td>
<td>Introduction to Scientific Computation</td>
<td>Financial Markets</td>
</tr>
<tr>
<td>Fundamentals of Financial and Management Accounting</td>
<td>Mathematical Analysis</td>
<td>Game Theory</td>
</tr>
<tr>
<td>Insurance in a Risky World</td>
<td>Probability Models and Methods</td>
<td>Mathematical Finance</td>
</tr>
<tr>
<td>Linear Mathematics</td>
<td>Professional Skills for Mathematicians</td>
<td>Optimization</td>
</tr>
<tr>
<td>Statistics</td>
<td>Statistical Models and Methods</td>
<td>Risk Management Processes</td>
</tr>
<tr>
<td>Probability</td>
<td>Statistical Inference</td>
<td>Statistical Inference</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stochastic Models</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Time Series Analysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vocational Financial Mathematics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Modules may change, for example due to curriculum developments. The above list is a sample of typical modules that we offer, not a definitive list. The most up-to-date information can be found on our website at nottingham.ac.uk/ugstudy/mathematics

I was searching through the potential courses at all universities and thought that Nottingham looked like a strong choice. Knowing that it was a Russell Group university only improved my thoughts about here. The contact hours and extra help that we receive are excellent. If you have any issues, the lecturers are always there to help.

Devisha Patel,
BSc Financial Mathematics
BSc Mathematics and Economics

Develop a broad education in mathematics and substantial degree-level studies in economics.

This degree combines the flexible skills of mathematics, such as problem solving and numeracy, with valuable subject knowledge in economics. This combination provides a thorough and fully integrated course and serves as an excellent foundation for a range of careers.

Key features
- Designed for mathematically minded students seeking to enter the business or finance sectors
- No requirement to have previously studied economics
- A wide range of options in mathematics and economics
- Opportunities to spend a semester studying abroad

Year one
Two-thirds of the first year consists of mathematics and covers material such as calculus, linear mathematics, mathematical software, methods of proof, probability, and statistics. The remaining third is dedicated to introductions to microeconomics and macroeconomics. The first year builds a foundation, so that a broad choice of mathematics and economics topics can be studied in later years.

Year two
Your time in the second year is equally split between mathematics and economics, and you have an extensive range of modules to choose from. In economics you will choose a pathway depending on your preferences to specialise more in microeconomics, macroeconomics and/or econometrics.

Year three
In year three, your time is split equally between mathematics and economics, and you will undertake modules from a wide range of options in both disciplines.

Typical modules

<table>
<thead>
<tr>
<th>Year one</th>
<th>Year two</th>
<th>Year three</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical and Computational Foundations</td>
<td>Econometric Theory</td>
<td>Advanced Financial Economics</td>
</tr>
<tr>
<td>Calculus</td>
<td>Financial Economics</td>
<td>Advanced International Trade Theory</td>
</tr>
<tr>
<td>Introduction to Macroeconomics</td>
<td>Introduction to Scientific Computation</td>
<td>Advanced Public Economics</td>
</tr>
<tr>
<td>Introduction to Microeconomics</td>
<td>Macroeconomic Theory</td>
<td>Coding and Cryptography</td>
</tr>
<tr>
<td>Linear Mathematics</td>
<td>Mathematical Analysis</td>
<td>Game Theory</td>
</tr>
<tr>
<td>Probability</td>
<td>Monetary Economics</td>
<td>Mathematical Finance</td>
</tr>
<tr>
<td>Statistics</td>
<td>Probability Models and Methods</td>
<td>Multivariate Analysis</td>
</tr>
<tr>
<td></td>
<td>Statistical Models and Methods</td>
<td>Numerical Methods in Economics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Statistical Inference</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stochastic Models</td>
</tr>
</tbody>
</table>

Modules may change, for example due to curriculum developments. The above list is a sample of typical modules that we offer, not a definitive list. The most up-to-date information can be found on our website at nottingham.ac.uk/ugstudy/mathematics

The course stood out among similar courses due to its flexible structure. All compulsory modules are studied in your first year, then once you have a clearer picture of what you want to do, you are free to pick the modules you like. I wasn’t sure what exactly I wanted to do, so I really liked the idea of such a varied course.

Iuliia Promkskaia, BSc Mathematics and Economics

nottingham.ac.uk/ugstudy/mathematics
Learn from expert academics

You will learn through a wide variety of activities, including formal lectures, small-group tutorials, problem classes and self-directed study.

Lecture-based modules
This type of module will form the majority of your studies in the first year, when you will take six modules at any given time. Each module will typically involve two hours of lectures per week with another hour devoted to supporting activities such as tutorials, problem classes or computer lab sessions.

Self-directed study
Individual or group self-directed study will play a central role in your learning. Timetabled activities, such as lectures, are very important and will introduce you to the key new ideas. However, in order to fully understand any mathematical topic, it is important that you spend time thinking about the underlying ideas and trying problems for yourself.

Summer internships
You can take advantage of the research expertise available in the school by applying for one of our highly sought-after summer internships. These paid positions give you the chance to gain experience of hands-on mathematical research by working on a project with an academic member of staff that could be published in a leading journal.

Peer-Assisted Study Support
Our Peer-Assisted Study Support (PASS) scheme is there to support you in your transition to university. In your first week, you will be introduced to students in their second year (or above) who will be your PASS leaders. During regular, timetabled meetings, your PASS leaders will provide mentoring to support you in developing important mathematical skills that will be useful throughout your course. They will also help you settle in and be on hand to offer advice about navigating your way through life at university.

Becoming a PASS leader is also beneficial as it helps you to develop valuable communication, leadership and interpersonal skills, while reinforcing your own mathematical knowledge.

"I really enjoyed my first year PASS sessions thanks to the friendly nature of all the students who were helping us. It gave me chance to get to know my course peers as well as students in other years too. Becoming a PASS leader meant I was able to give something back to the school and allowed me the chance to work on my employability skills such as leadership, communication and problem solving.
Aabha Khetarpal, MMath Mathematics"

Example timetable

The table below gives you an idea of how your study time may be spent, although each term can differ depending on the modules you have chosen.

A sample first-year timetable for BSc Mathematics (G100) spring semester

<table>
<thead>
<tr>
<th>Monday</th>
<th>9-10am</th>
<th>10-11am</th>
<th>11-12pm</th>
<th>12-1pm</th>
<th>1-2pm</th>
<th>2-3pm</th>
<th>3-4pm</th>
<th>4-5pm</th>
<th>5-6pm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>Lecture</td>
<td>Optional drop-in class</td>
<td>Lecture</td>
<td>Optional drop-in class</td>
<td>Lecture</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuesday</td>
<td></td>
<td>PASS session</td>
<td>Lecture</td>
<td>Problem class</td>
<td>Computer lab</td>
<td>Lecture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wednesday</td>
<td></td>
<td>Lecture</td>
<td>No teaching - sport and leisure time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thursday</td>
<td>Computer lab</td>
<td>Lecture</td>
<td></td>
<td>Lecture</td>
<td>Lecture</td>
<td>Lecture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friday</td>
<td>Problem class</td>
<td>Lecture</td>
<td></td>
<td>Optional drop-in class</td>
<td>Lecture</td>
<td>Problem class</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example timetable

The table below gives you an idea of how your study time may be spent, although each term can differ depending on the modules you have chosen.

A sample first-year timetable for BSc Mathematics (G100) spring semester

<table>
<thead>
<tr>
<th>Monday</th>
<th>9-10am</th>
<th>10-11am</th>
<th>11-12pm</th>
<th>12-1pm</th>
<th>1-2pm</th>
<th>2-3pm</th>
<th>3-4pm</th>
<th>4-5pm</th>
<th>5-6pm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>Lecture</td>
<td>Optional drop-in class</td>
<td>Lecture</td>
<td>Optional drop-in class</td>
<td>Lecture</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuesday</td>
<td></td>
<td>PASS session</td>
<td>Lecture</td>
<td>Problem class</td>
<td>Computer lab</td>
<td>Lecture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wednesday</td>
<td></td>
<td>Lecture</td>
<td>No teaching - sport and leisure time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thursday</td>
<td>Computer lab</td>
<td>Lecture</td>
<td></td>
<td>Lecture</td>
<td>Lecture</td>
<td>Lecture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friday</td>
<td>Problem class</td>
<td>Lecture</td>
<td></td>
<td>Optional drop-in class</td>
<td>Lecture</td>
<td>Problem class</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Personal tutor
Throughout your degree you will have a tutor on hand to offer support on matters such as module choice and career direction. They will also meet with you weekly in a group of five or six students in your first year to work through the material covered in core modules.

Teaching Officer
To help you adapt to the style and content of university-level mathematics, our dedicated Teaching Officer is available to support you. Drop-in sessions provide additional help for your first-year modules, if required, or can help you catch up if you have been unable to attend lectures.

Modules and credits
Modules are self-contained units of study which may run either for a semester or a year. The majority of modules are worth 10 or 20 credits each and you will study modules totalling 120 credits in each year. This system gives you some flexibility in the way you construct your course.

You will usually study a combination of compulsory and optional modules, with some modules being pre-requisites for modules later in the course.

Assessment methods
Assessment varies throughout the course but it is typically a combination of computer assessments or reports, coursework and written examinations.
Outstanding careers support

94.4% of undergraduates from the school secured work or further study within six months of graduation*

From accountant to engineer, analyst to investment banker, mathematics is a wide-ranging and versatile subject and the list of careers open to you as a graduate is extensive. Mathematics degrees are in demand by employers not only for the direct subject knowledge they provide in areas including finance, data science and software engineering but also the fact that mathematicians are problem solvers and analytical thinking skills and high level numeracy are great assets.

£24,500 was the average starting salary* from graduates.

Graduate career destinations
The University of Nottingham is one of a small number of leading universities whose graduates are targeted for recruitment by various top companies. Many of our recent graduates have secured employment within companies including KPMG, Deutsche Bank, Apple, and BAE Systems.

Postgraduate research
You might decide to continue your studies at postgraduate level. In previous years, our students have achieved higher degrees in subjects such as mathematics, computing, education and engineering. Each year some of our best students choose to stay at Nottingham and join our lively group of postgraduate research students in the School of Mathematical Sciences. You can find out more about our diverse and exciting research groups at nottingham.ac.uk/mathematics/research

Amplify your potential
Whether you already have a plan or need some inspiration, your Careers and Employability Service is here to help.

Academic excellence and employability go hand in hand at Nottingham. Your course, and the diverse student experiences we offer, will enable you to develop the skills and professional competencies required to thrive in the job market of the future.

We will help you explore your options, so you feel confident making choices about what you want to achieve. Our team will support you as you build your CV, search for jobs, prepare applications, practise your interview technique, and much more.

Get the Advantage
The career-enhancing Nottingham Advantage Award recognises and rewards your extracurricular activities. With a choice of over 200 modules, you can hone the key skills employers are looking for. From developing your leadership skills and learning a language to public speaking and volunteering, you will leave university with demonstrable experience that sets you apart from other graduates. For further information, visit nottingham.ac.uk/careers/advantage

Recent graduate destinations:
- Financial services (accountancy, actuarial work, banking)
- IT (programming, systems analysis, software engineering)
- Industry (management, research and development, retail)
- Government (civil service, taxation)

* Known destinations of full-time home undergraduates who were available for work 2016/17. Salaries are calculated based on the median of those in full-time paid employment within the UK.
How to apply

All applications for full-time undergraduate study at Nottingham, including applications by international students, must be made through UCAS.

You can apply online at ucas.com and will be notified of decisions through UCAS Track.

Your personal statement
This is the section of your UCAS form that tells us most about you, and you should make the best use of it. Be as specific and detailed as you can – we would like to see that you are a student who can work hard, be self-motivated and make the best possible use of the opportunities that our courses offer you. We would also like to hear about any skills you have gained through extracurricular activities.

Minimum entry requirements
Unless otherwise stated in individual course profiles, all UK applicants should have GCSE English grade 4 (C) as a minimum.

Alternative qualifications
In this brochure you will find our A level and International Baccalaureate entry requirements but we accept a much broader range of qualifications. For more details, visit nottingham.ac.uk/ugstudy/applying

Flexible admissions policy
In recognition of our applicants’ varied experience and educational pathways, we employ a flexible admissions policy. If we judge that your situation has adversely affected your achievement, then we will consider this when assessing your academic potential. Some courses may make a slightly lower offer. For more information about this policy, see nottingham.ac.uk/ugstudy/applying

Mature applicants
We encourage applications from mature students, who are defined as 21 years old and over. You should apply through UCAS. Find out more at nottingham.ac.uk/mature

International applicants
The University provides a range of information and advice for international applicants. If you are unable to attend an open day, we can meet you in your country at one of our overseas events or arrange an individual visit to the University. For further information please visit nottingham.ac.uk/international

Deferred entry
Applicants who wish to defer their entry by a year will not be at a disadvantage. Please tell us something about your plans for your gap year in your UCAS personal statement.

Equal opportunities policy
The University aims to create the conditions whereby students and staff are treated solely on the basis of their merits, abilities and potential, regardless of gender, race, colour, nationality, ethnic or national origin, age, socio-economic background, disability, religious or political beliefs, trade union membership, family circumstances, sexual orientation or other irrelevant distinction.

If you wish to declare a disability, please ensure that you have ticked the appropriate box on your UCAS application form. Disclosure of this information will not affect your application.

In 2019/20 the Core Bursary will offer up to £2,000 for each year of undergraduate study.* For more details see: nottingham.ac.uk/financialsupport

* To eligible home fee status students.
For undergraduate enquiries contact:
Student Recruitment Support Hub

+44 (0)115 951 5559
nottingham.ac.uk/contact
UoNMaths
@UoNMaths
nottingham.ac.uk/mathematics

This publication is available in alternative formats:
+44 (0)115 951 5559

© University of Nottingham 2019.
All rights reserved. Printed May 2019.

This brochure has been drafted in advance of the academic year to which it applies. Every effort has been made to ensure that the information contained in this brochure is accurate at the time of publishing, but changes (for example to course content) are likely to occur given the interval between publication and commencement of the course. It is therefore very important to check our website for any updates before you apply for the course by following nottingham.ac.uk/ugstudy. Where there is a difference between the contents of this brochure and our website, the contents of the website take precedence.