Multi-user equipment and facilities
Contents

Foreword

Compare Centre of Membrane Proteins and Receptors

DeepSeq Next Generation and Sanger Sequencing Facility

Digital Research Service Bespoke Data Analytics, Bioinformatics and Software Engineering

DNP MAS NMR Facility DNP assisted magic-angle spinning solid-state NMR

Flow Cytometry Facility Flow Cytometry, Imaging Flow Cytometry and Cell Sorting

Hounsfield Facility 3D X-ray CT Imaging

Managed Chemical Compound Collection Facility Automated Compound Screening

Nanofabrication Nottingham (NaNo) Open Access nanofabrication and microfluidic facility

Nanoscale and Microscale Research Centre World leading materials nanoscience imaging and characterisation

SBRC Robotics Suite Liquid handling and high throughput screening

School of Chemistry Analytical Sciences Chromatography, Mass Spectrometry, X-ray Crystallography, NMR and High Field NMR

School of Life Sciences Imaging State of the art microscopy from wide field to electron microscopy

Sir Peter Mansfield Imaging Centre Medical Imaging

The Pre-Clinical Imaging Research Laboratories

Foreword

World-class facilities and expertise: we’re ready to help

At the University of Nottingham we are committed to the delivery of exceptional research that transforms lives and shapes the future.

By sharing expertise and real-world solutions with industry and the business community we enhance this mission.

Our world-leading facilities combine cutting-edge equipment and technologies with internationally renowned technical skills and expertise.

This brochure introduces these facilities and explains how you can access the training, support, experimental design and data analysis that are essential to delivery of the highest quality of outcomes.

It also underlines how services for business and access to our equipment and expertise further strengthen our partnerships with the communities we serve. Funding through EPSRC, BBSRC and University of Nottingham has recently helped deliver on-line and remote access to high end technology within facilities such as SLIM, the Hounsfield and nmRC which further improves our connectivity and collaborations with external companies.

Here you will find summaries of our facilities and their capabilities, plus contact details.

Our experts participate in regional and national networks and work across facilities and disciplines, further enhancing our capabilities to offer solutions to complex problems.

If you cannot find what you are looking for then please contact tim.self@nottingham.ac.uk or david.onion@nottingham.ac.uk who can guide you to the expertise you need.

We look forward to working with you.

Professor Phil Williams
Chair, University of Nottingham Facility and Equipment Management Committee
The sequencing facility offers research scientists access to state of the art high-throughput sequencing technology. Our experienced team of dedicated experimental scientists and bioinformaticians will work with you from the conception of your sequencing experiment to the final analysis of your data. As well as running standard sequencing projects we enjoy the challenges of developing new and emerging applications. DeepSeq are world experts in Oxford Nanopore Technologies platforms, and also run two Illumina platforms, a 10x Genomics Chromium and a Bionano Saphyr for optical mapping. DeepSeq also houses the Sanger sequencing facility which provides quick turn-around times and help and expertise for high quality Sanger sequencing and fragment analysis.

Who to contact and how
- General Enquiries: victoria.wright@nottingham.ac.uk
dee.seq@nottingham.ac.uk
- Sanger Facility: matthew.carlile@nottingham.ac.uk

Website address
nottingham.ac.uk/deepseq/index
nottingham.ac.uk/life-sciences/facilities/dna-sequencing

Equipment / techniques available
1. Bioinformatics support and expertise
2. Bionano Saphyr for optical mapping
3. We run libraries you prepare for Run-Only projects
4. Pilot Studies for NGS projects and advice on outsourcing large projects
5. Library preps for most NGS applications. Includes express 2-week MiSeq turn-arounds
6. Illumina Sequencing with the MiSeq and NextSeq500, from 50bp single to 300bp paired-end reads
7. MiniION runs: we can even help you to run your own Oxford Nanopore Technologies MiniION
8. GridION and PromethION library preps and runs.
9. HMW DNA extractions for Oxford Nanopore Technologies and Bionano Saphyr projects
10. Perform library preps then outsource the sequencing for high throughput projects
11. High quality Sanger sequencing with fast turn arounds.
12. 10x Genomics Chromium runs for single cell and many more applications
13. Accessible kit: TapeStation, Covaris, Flouorskan, Sage HLS, BluePippin, NanoDrop, Qubit
Dynamic nuclear polarisation assisted solid-state NMR is a unique technique which gives an unprecedented sensitivity boost to already established solid-state NMR. It enhances sensitivity by two to four orders of magnitude. This can be used to study rare and insensitive nuclei or organic compounds without isotope enrichment, carry out surface-selective studies of materials like zeolites and MOFs or work with biomaterials in low physically relevant concentrations which otherwise could not be used in conventional ssNMR.

The facility is a joint project of the School of Physics and Astronomy, the School of Chemistry and the School of Life Sciences. It consists of a unique Ascend™ wide-bore (89 mm) 14.1 Tesla cryo-magnet, with sweep-coil and autonomous helium recycling system (Ascend Aeon design), and a 7.2 T, 395 GHz gyrotron for high sensitivity and high resolution solid-state NMR. It is the first and only UK DNP MAS NMR Facility based on a commercial instrument.

Who to contact and how

■ Dr Walter Köckenberger
walter.kockenberger@nottingham.ac.uk

Website address
nottingham.ac.uk/dnpnmr

Equipment / techniques available

1. 14.1 T High field solid-state NMR spectrometer coupled with 395 GHz CW microwave source for dynamic nuclear polarisation assisted solid-state NMR
2. Low temperature (100K) magic-angle spinning equipment

Contact

■ Click here

Website address
nottingham.ac.uk/dts/researcher/digital-research-service
The Hounsfield Facility is a world leading multidisciplinary initiative involving researchers from the Schools of Biosciences, Computer Science, Maths, and Engineering. We use ‘state-of-the-art’, 3D, non-destructive X-ray Computed Tomography (CT) technologies and innovative image analysis techniques to explore and quantify the internal architecture of biomaterials and support research into environmental sustainability and global food security. We have three X-ray CT systems available for different applications and object sizes. Examples of projects range from the quantification of pore networks and voids in soils, rocks, metal castings and food products to measuring the temporal development of plant root systems in heterogenous environments.

Who to contact and how
- Dr Craig Sturrock
craig.sturrock@nottingham.ac.uk
+44 115 951 6786

Website address
nottingham.ac.uk/microct

Equipment / techniques available
1. GE phoenix nanotom180kV X-ray CT system
 - Spatial resolution: <1 to 60µm (depending on sample size)
 - Maximum sample size: 100 x 60 x 60mm
2. GE v|tome|x M 240 kV X-ray CT system
 - Spatial resolution: 10 to 150µm (depending on sample size)
 - Maximum sample size: 400 x 250 x 250mm
3. GE v|tome|x L 320 kV custom X-ray CT system
 - Spatial resolution: 150µm
 - Maximum sample size: 100 x 20 x 20cm
Nanofabrication Nottingham (NaNo)

Nanofabrication Nottingham (NaNo) is an ISO 5 (class 100) cleanroom located within the nmRC. It houses a nanobeam nB5 electron beam lithography tool that can create features as small as 30nm on a range of substrates including silicon, glass and GaAs. For larger patterns we have a maskless photolithography tool (Alvéole Primo), with a resolution of 1.2 µm, which can be used to make microfluidic devices without the need for costly masks. This can also be used to pattern substrates allowing for cells to be deposited in specific areas allowing for easier and more relevant imaging.

In addition to our lithography equipment we also have an Accurion ep4 imaging ellipsometer that can be used to measure the thickness and optical properties of thin films with a lateral resolution as small as 5µm making it ideal for measurements on flakes of 2D materials.

Contact
- Dr Richard Cousins
 richard.cousins1@nottingham.ac.uk
- Dr Christopher Mellor
 chris.mellor@nottingham.ac.uk

Website address
nottingham.ac.uk/nmrc/facilities/ebl/electron-beam-lithography

Equipment / techniques available
1. Electron Beam Lithography
2. Microfluidic cell fabrication
3. Imaging ellipsometry
4. Cell adhesion control

Managed Chemical Compound Collection Facility

The MCCC Facility
The University of Nottingham has an established state-of-the-art fully automated and integrated Managed Chemical Compound Collection Facility. The facility provides a screening resource for the identification of chemical starting points as drug leads against newly identified and validated drug targets.

Compound Collection
At present MCCC contains ~85k public-domain compounds, sourced from primary vendors using advanced chemical diversity and physicochemical properties selection criteria. The collection is housed in an automated high density environmentally control storage unit coupled with retrieval and dispensing equipment.

Compound Integrity
The MCCC facility includes a dedicated liquid chromatography-mass spectrometry (LC-MS) system for quality control of samples.

Who to contact and how
- Fadi Soukarieh
 pazfs2@exmail.nottingham.ac.uk
- Lodewijk Dekker
 pazlvd@exmail.nottingham.ac.uk

Equipment
1. TTP Labtech comPOUND
2. TTP LabTech comPILER
3. Tecan Freedom Evo
4. Shimadzu LC2020
The SBRC Robotics Suite hosts two robotic platforms both placed within a positive pressure HEPA enclosure. They provide a fully integrated, yet versatile system of auxiliary devices, centred around a BiomekFXp dual arm liquid handling robot. It can handle a wide range of plates in the SBS format and benefits from an on-deck thermocycler and peltier devices (4°C-100°C), integrated CO2 shaking incubators (4°C-50°C), plate reader, solid phase extraction, a pin tool for plate stamping and a colony picker (Qpix, Molecular Devices). The system can perform a variety of high throughput biochemical and molecular techniques such as magnetic beads and vacuum-based extractions, enzymatic assays, gene assembly, high-throughput screening plus plate replication and reformattting. The system is supported by an experienced team to help design, budget and set-up your automation experiments, extract generated data as well as track and manage your samples.

Who to contact and how
- Dr Ruth Cornock, Facility Manager: ruth.cornock@nottingham.ac.uk
- Dr Ying Zhang, Academic Lead: ying.zhang@nottingham.ac.uk
- Dr Alan Burbidge, SBRC Manager: alan.burbidge@nottingham.ac.uk

Website address
nottingham.ac.uk/cbs/expertise-and-equipment

Equipment / techniques available
1. Biomek FXp (Beckman Coulter) dual arm liquid handling robots
2. Cytomat24 (ThermoFisher) Plate hotels with a combined capacity of 341 plates
3. Cytomat2 (ThermoFisher) CO2 shaking incubators (4°C-60°C)
4. SpectraMax 13x (Molecular Devices) plate reader (absorbance, fluorescence and luminescence)
5. Qpix colony picker (Molecular Devices)
School of Life Sciences Imaging (SLIM) provides access to cutting-edge imaging technology and expertise to researchers across the University and the business community. The resources in SLIM are supported by an experienced 5-person team with a combined 100+ years expertise in microscopy, image-analysis and sample-preparation. Both collaborative projects and service work are available to external users.

Who to contact and how:
- Tim Self, Head of SLIM
 tim.self@nottingham.ac.uk
 +44 115 823 0090

Website address
nottingham.ac.uk/life-sciences/facilities/slim

Equipment / techniques available:
1. Light microscopy
2. Confocal microscopy
3. Electron microscopy
4. Super resolution
5. High Content Imaging
6. Histology
The Sir Peter Mansfield Imaging Centre (SPMIC) is an interdisciplinary, cross-faculty centre for innovative imaging in experimental and translational medicine, which brings together researchers who develop new medical imaging techniques with clinicians and scientists who use them. The SPMIC spans two sites: one based on University Park and the other in the Medical School in the Queen’s Medical Centre. Whether you are a new user of medical imaging equipment (MRI, MEG, EEG, and fNIRS) or are an experienced user, we have the facilities, the staff and the experience to help you get the most from using medical imaging in your research. We have experience of working with clinical and non-clinical academic research groups including the pharmaceutical and food industries, as well as other science and engineering research groups. In particular, our staff have training and experience in working to Good Clinical Practice standards and include clinically-qualified radiographers.

Who to contact and how
- General enquiries: spmic@nottingham.ac.uk
 +44 115 846 8946
- Centre Manager: Andrew Peters
 andrew.peters@nottingham.ac.uk

Website address
nottingham.ac.uk/spmic

Equipment / techniques available
1. 1.5T, 3T and 7T whole body Magnetic Resonance Imaging (MRI) systems
2. 275-Channel Magnetoencephalography (MEG) system
3. OPM-MEG system
4. Electroencephalography (EEG) – including MR-compatible EEG
5. Mock Scanner
6. Upright 0.5T scanner, allowing weight-bearing studies
7. Sound-proof, screened room equipped with high density EEG, and Auditory Brainstem Response system
8. GE SPINlab MRI Hyperpolariser
9. Krypton Hyperpolariser

The pre-clinical imaging research laboratories provide state-of-the-art MRI facilities for in vivo high field magnetic resonance imaging and spectroscopy. The facilities have a Bruker Avance III system with a 30 cm bore 7 T magnet with a range of RF coils that make them applicable to an array of applications including a deuterium coil for the latest applications in metabolic imaging. We have extensive experience with imaging and spectroscopy methods in a large variety of samples and materials from animals, cells and ex vivo tissues to food products and plants. Work is ongoing with the facility to create targeted MRI contrast agents, particularly in the areas of inflammation, neurodegeneration, cancer, and drug delivery. There is the potential for collaborative projects in the design of new molecular imaging approaches for tailored applications, including complementary synthetic chemistry and histology expertise.

Who to contact and how
- Dr Malcolm Prior
 malcolm.prior@nottingham.ac.uk
 +44 115 846 8265
- Dr Peter Harvey
 peter.harvey@nottingham.ac.uk
 +44 115 823 2871

Equipment / techniques available
There are numerous magnetic resonance methods that are implemented on the pre-clinical scanners and they have many applications. Magnetic resonance imaging in its simplest forms, can be used to measure structural features in a wide variety of samples and can routinely achieve a resolution 30 μm in smaller objects. Examples of applications in vivo include the study of morphological development, injuries and tissue deterioration, whilst studies in other materials have measured such things as the composition of manufactured foods. More sophisticated magnetic resonance imaging applications can provide information on range of physical parameters such as flow, molecular diffusion, temperature and chemical composition. These techniques have numerous applications and have been applied to disease models such as tumour growth, stroke and infection. Similarly, there are numerous applications of these techniques in fields of plant biology and food science. The technique of magnetic resonance spectroscopy has been routinely used in this facility to measure brain metabolite levels in regions as small as the mouse hippocampus. Measurements of changes in metabolite levels are applicable to many in vivo disease models and can also be acquired from cell suspensions. This technique can also be applied to plants, food science and other materials.
<table>
<thead>
<tr>
<th>Page</th>
<th>Facility Name</th>
<th>Services/Techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>COMPARE</td>
<td>Fluorescence Correlation Spectroscopy (FCS), Fluorescence Lifetime Imaging (FLIM), Total Internal Reflection Fluorescence (TIRF), Bioluminescence, Ptychography, Stimulated Emission Depletion (STED)</td>
</tr>
<tr>
<td>2</td>
<td>DeepSeq</td>
<td>Next Generation Sequencing (NGS), Illumina, Oxford Nanopore Technologies, Sanger</td>
</tr>
<tr>
<td>3</td>
<td>Digital Research Service</td>
<td>Data Analytics, Bioinformatics, Software Engineering</td>
</tr>
<tr>
<td>4</td>
<td>DNP MAS NMR Facility</td>
<td>Dynamic Nuclear Polarisation (DNP), Solid State Spectroscopy, Materials Characterisation, Molecular Structure Determination</td>
</tr>
<tr>
<td>5</td>
<td>Flow Cytometry Facility</td>
<td>Flow cytometry, Cell sorting, FACS</td>
</tr>
<tr>
<td>6</td>
<td>Hounsfield Facility</td>
<td>X-ray Computed Tomography, Non-destructive testing, 3D microstructural imaging</td>
</tr>
<tr>
<td>7</td>
<td>Managed Chemical Compound Collection Facility</td>
<td>Drug Discovery, Screening compounds, Inhibitor Screening, Automated library</td>
</tr>
<tr>
<td>8</td>
<td>Nanofabrication Nottingham</td>
<td>Electron Beam Lithography, Ellipsometry, Microfluidics, Cleanroom, Nanofabrication</td>
</tr>
<tr>
<td>9</td>
<td>Sir Peter Mansfield Imaging Centre</td>
<td>Magnetic Resonance Imaging (MRI), Magnetic Resonance Spectroscopy (MRS), Magnetoencephalography (MEG), OPM-MEG, Dynamic Nuclear Polarisation (DNP), Hyperpolarised Gas Imaging, Medical Imaging</td>
</tr>
<tr>
<td>10</td>
<td>The Pre-Clinical Imaging Research Laboratories</td>
<td>Magnetic Resonance Imaging (MRI), Magnetic Resonance Spectroscopy (MRS), Molecular imaging, Contrast agents, Pre-clinical</td>
</tr>
<tr>
<td>11</td>
<td>SBRC Robotics Suite</td>
<td>Automation, Liquid handling, High-throughput Screening, Plate replication</td>
</tr>
<tr>
<td>12</td>
<td>School of Chemistry Analytical Sciences</td>
<td>X-ray Crystallography, Chromatography, Mass Spectrometry</td>
</tr>
<tr>
<td>13</td>
<td>School of Life Sciences Imaging</td>
<td>Light microscopy, Confocal microscopy, Electron microscopy, Super resolution, High Content Imaging, Histology</td>
</tr>
<tr>
<td>14</td>
<td>The Pre-Clinical Imaging Research Laboratories</td>
<td>Magnetic Resonance Imaging (MRI), Magnetic Resonance Spectroscopy (MRS), Molecular imaging, Contrast agents, Pre-clinical</td>
</tr>
<tr>
<td>15</td>
<td>The Pre-Clinical Imaging Research Laboratories</td>
<td>Magnetic Resonance Imaging (MRI), Magnetic Resonance Spectroscopy (MRS), Molecular imaging, Contrast agents, Pre-clinical</td>
</tr>
<tr>
<td>16</td>
<td>The Pre-Clinical Imaging Research Laboratories</td>
<td>Magnetic Resonance Imaging (MRI), Magnetic Resonance Spectroscopy (MRS), Molecular imaging, Contrast agents, Pre-clinical</td>
</tr>
</tbody>
</table>

Glossary

- **COMPARE**
 - Fluorescence Correlation Spectroscopy (FCS)
 - Fluorescence Lifetime Imaging (FLIM)
 - Total Internal Reflection Fluorescence (TIRF)
 - Bioluminescence
 - Ptychography
 - Stimulated Emission Depletion (STED)

- **DeepSeq**
 - Next Generation Sequencing (NGS)
 - Illumina
 - Oxford Nanopore Technologies
 - Sanger

- **Digital Research Service**
 - Data Analytics
 - Bioinformatics
 - Software Engineering

- **DNP MAS NMR Facility**
 - Dynamic Nuclear Polarisation (DNP)
 - Solid State Spectroscopy
 - Materials Characterisation
 - Molecular Structure Determination

- **Flow Cytometry Facility**
 - Flow cytometry
 - Cell sorting
 - FACS

- **Hounsfield Facility**
 - X-ray Computed Tomography
 - Non-destructive testing
 - 3D microstructural imaging

- **Managed Chemical Compound Collection Facility**
 - Drug Discovery
 - Screening compounds
 - Inhibitor Screening
 - Automated library

- **Nanofabrication Nottingham**
 - Electron Beam Lithography
 - Ellipsometry
 - Microfluidics
 - Cleanroom
 - Nanofabrication