Pages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 9121 result(s) returned

5.1 The development of the bicycle

Section 4 has looked at how we can follow a logical route or map, from the expression of a need, to arrive at possible solutions to a problem. In Sections 5 and 6 we look in more detail at two quite different examples of engineering problems. Our first example is the historical development of the bicycle frame; the second concerns a vital component of a car's airbag system.

The weight of a bicycle frame is a major burden that the cyclist has to bear. There have certainly been times when
Author(s): The Open University

License information
Related content

Copyright © 2016 The Open University

4.9 Final implementation

The line you take here obviously depends on the problem you set out to solve. If you were creating a new product for retail or industry, then the final step of the process would be to put that product into manufacture and watch it go off into the world to begin its life cycle (Figure 20). If the s
Author(s): The Open University

License information
Related content

Copyright © 2016 The Open University

4.3 Possible solutions

According to Figure 7, our map of the problem-solving process, once we've defined the problem according to the need the next step is the creative bit – to look for 'possible solutions', Author(s): The Open University

3 Needs and problems

The last section has established that engineering is about satisfying needs. In fact, with so many needs, it's a wonder that not everyone is an engineer! So, now that we have talked about both needs and problems, the logical progression is to examine the relationship between them.

Take the water example as being a fundamental need. We can state it thus:

This village needs a supply of clean water.
Author(s): The Open University

License information
Related content

Copyright © 2016 The Open University

5.13.2 Circular membrane

When a membrane that is stretched over a circular frame is struck, energy is supplied, which again causes the membrane to vibrate in a number of modes simultaneously.

The first six modes in which the circular membrane can vibrate are shown in Figure 20. The diagrams comprise circles that are conce
Author(s): The Open University

License information
Related content

Copyright © 2016 The Open University

5.5 Vibrating string: pitches of notes produced by stringed instruments

When a string is bowed, plucked or struck, energy is supplied that starts the string vibrating. The string doesn't just vibrate in one single mode; instead, it vibrates in a combination of several modes simultaneously. The displacement along the string is the superposition of the standing-wave patterns corresponding to those modes. For example, if the string vibrated only in the first and second modes, the displacement at a given instant of time might appear as shown in Author(s): The Open University

5.3 Vibrating string: standing waves on a string

We still haven't answered the question of how standing waves are set up on a string. To do so we need to return to our string, fixed at one end and held in someone's hand at the other end. Imagine now that instead of sending a single pulse along the string, the person flicks their hand up and down periodically and sends a sinusoidal wave along the string. This wave gets reflected and inverted at the fixed end and travels back towards the person holding the string. There are now two waves of t
Author(s): The Open University

License information
Related content

Copyright © 2016 The Open University

4.7 Summary

Water in its 'natural' state supports a complex, yet fragile, ecosystem. The ability of natural watercourses to sustain aquatic life depends on a variety of physical, chemical and biological conditions. Biodegradable compounds, nutrients and dissolved oxygen must be available for the metabolic activities of the algae, fungi, bacteria and protozoa which are at the lowest level of the food chain. In addition, plant and animal growth cannot occur outside narrow ranges of temperature and pH. Susp
Author(s): The Open University

License information
Related content

Copyright © 2016 The Open University

4.6 Tidal rivers and estuaries

Most of the major cities and harbours in the world are located on estuaries. The estuarine ecosystem is a unique intermediate between the sea, the land and fresh water.

A rather precise definition of an estuary is 'a semi-enclosed coastal body of water, which has a free connection with the open sea, and within which sea water is measurably diluted with fresh water derived from land drainage'. This excludes large bays with little or no freshwater flow, and large brackish seas and inland
Author(s): The Open University

License information
Related content

Copyright © 2016 The Open University

3.5.5 Biological indicators

A great many biological species and individuals occur in normal streams. These often differ markedly in their sensitivity to environmental factors, and likewise the tolerances of various species to different types of pollution vary considerably. The major groups of organisms that have been used as indicators of environmental pollution include bacteria, fungi, protozoa, algae, higher plants, macroinvertebrates and fish. The benthic 'bottom living' macroinvertebrates are particularly suitable a
Author(s): The Open University

License information
Related content

Copyright © 2016 The Open University

2.7 Infiltration

Entry of precipitation through the soil surface and on downwards, by gravity, is known as infiltration. The rate at which this process can take place is governed by the permeability (a measure of the ease with which water can flow through the subsurface layer) and by the existing degree of saturation of the soil. Infiltration can be impeded by outcropping impermeable rocks or by paved areas, and also by the presence of finegrained soils with a low permeability (such as clay). At certain times
Author(s): The Open University

License information
Related content

Copyright © 2016 The Open University

3.1 The acquisitive model of learning

The three models are introduced in turn, and each is followed by an activity that invites you to apply the model to your studies.

This model of learning starts from a focus on the observable behaviour of the learner and on the idea that this can be changed by feedback from the learning environment. It is associated with the idea that learning has to do with reproducing some desirable behaviours or measurable outcomes.

The learning process is seen as a process of accretion. Learner
Author(s): The Open University

License information
Related content

Copyright © 2016 The Open University

3.4.5 Fretting fatigue

An additional possibility was considered. It was known that there was significant movement of the bridge during passage of traffic, because users had noticed it many times when crossing. The joints would thus have been subjected to rotary motion around the pin in order to accommodate such vibrations. Could these have caused fatigue crack growth at the bearing surfaces?

Contact between a circular and a flat plate creates so-called Hertzian stresses at the contact zone: compressive at the
Author(s): The Open University

License information
Related content

Copyright © 2016 The Open University

3.4.1 Fracture surface

One half of the eye at the joint is shown in Figure 38(a), and it shows two breaks in the limbs either side of the pin-hole. Although both appear brittle in this picture, in fact one side showed signs of ductile deformation. The way it had fractured was unique when compared with the other eye
Author(s): The Open University

License information
Related content

Copyright © 2016 The Open University

3.3.4 Examining the parts

Brittle fractures were discovered quickly in the mass of debris hauled from the river. Such samples became the focus of increasing effort as time went by, simply because they were unexpected. So the possible failure mechanisms were immediately narrowed down when brittle fractures of critical components started to emerge from the river.

Author(s): The Open University

License information
Related content

Copyright © 2016 The Open University

1.3 Environmental factors

I indicated earlier that many failures occur after a product has been in service for some time: such as the wear of a car tyre, or corrosion of the car body itself. It is also possible for components to fail because of a combination of a manufacturing defect with the applied loading or with the environmental conditions during use. Author(s): The Open University

An introduction to material culture
This free course, An introduction to material culture, introduces the study of material culture. It asks why we should study things and outlines some basic approaches to studying objects. Dr Rodney Harrison.
First published on Mon, 11 Jan 2016 as Author(s):
Dr Rodney Harrison

Introduction

This course explores two important concepts relating to the creation of music, namely composition and improvisation. The concepts of composition and improvisation are closely linked, and the reason for looking at non-Western music is partly to demonstrate this truth – it should help to clarify these two concepts, and the relationship between them.

We couldn't hope to cover a representative sample of the world's musics in a single course, and I have certainly not tried to do so here. W
Author(s): The Open University

License information
Related content

Copyright © 2016 The Open University

Introduction

This unit focuses on the creation of a semiconductor transistor – a versatile tiny transistor that is now at the heart of the electronics industry. In the video clips, the history of the incredible shrinking chip, its Scottish connections and an explanation of the physics that make chips work are accompanied by a reconstruction of making a transistor using the crude techniques of yesteryear.

This OpenLearn course provides a sample of Level 2 study in Author(s): The Open University

License information
Related content

Copyright © 2016 The Open University

Introduction

This course investigates certain philosophical questions concerning the nature of emotions.

This OpenLearn course provides a sample of Level 3 study in Arts and Humanities.


Author(s): The Open University

License information
Related content

Copyright © 2016 The Open University

Pages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457