1.6 Impurities in coal

Coal rank reflects the maturity of a coal, but another variable is the ratio of combustible organic matter to inorganic impurities found within the coal. As discussed earlier, impurities result mainly from clay minerals washed into the mire prior to its eventual burial. In addition, some impurities are formed from the plant material itself during coalification.

These inorganic impurities are non-combustible and therefore leave an inert residue or ash after coal combustion. High-a
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

1.5 The physics and chemistry of coal formation

Coal is a type of sediment made up mainly of lithified plant remains. But how does spongy, rotting plant debris become a hard seam of coal? As discussed earlier, plant material growing in mires dies, and then rots under anoxic conditions to form peat (by the process of humification). With time, the mire becomes covered with layers of sediment, the weight of which squeezes water and gas out of the pore spaces and compacts the vegetation. As subsidence allows deposition of further mireâ€
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

1.4 Coal-forming environments in the geological record

Figure 5 simplifies a typical vertical succession of sedimentary rocks found in many coalfields. The sequence from the base of the section upwards reveals the following:

  1. When a mire starts to form, the first plants take root in underlying clays or sands that form the soil. Their r
    Author(s): The Open University

    License information
    Related content

    Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

1.3.2 Peat formation in raised mires

Mires can also form inland within low-lying depressions, provided the rate of precipitation exceeds the rate of evaporation (Figure 4a). Peat is impermeable and so its accumulation progressively impedes drainage. This attribute gives mires the ability to maintain a water table independent of the area surrounding them.
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

1.3.1 Peat formation in deltas and coastal barrier systems

Since mires require poor drainage, low-lying land close to coastal areas might provide the right conditions for peat to form. Most extensive areas of modern peat formation are indeed situated not far above sea-level, and as Figure 2 shows, they are commonly associated with river deltas and coastal barriers. Such enviro
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

1.3 Coal-forming environments today

Coal formation begins with preservation of waterlogged plant remains to produce peat and then slow compression as the peat is buried. About 10 m of peat will compress down to form about 1 m of coal; clearly large amounts of plant debris must be available for preservation. Even so, for a significant thickness of peat to accumulate there must be a balance between the growth of plants and the decay of underlying dead material to form peat (a process known as humification).

Su
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

1.2 The origins of coal

If you examine a piece of coal, at first sight it appears black and rather homogenous. However, closer inspection generally shows a series of parallel bands up to a few millimetres thick. Most obvious are shiny bands that break into angular pieces if struck. Between them are layers of dull, relatively hard coal and thin weak layers of charcoal-like carbon. Coal splits easily along these weak layers, which crumble to give coal its characteristic dusty black coating.

Microscopic examinati
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

1.1 Introduction

There are many environmental reasons why coal is a rather undesirable source of energy. Burning it introduces large amounts of gases into the atmosphere that harm the environment in a variety of ways, as well as other, solid waste products. Coal extraction leads to spoil heaps and mines that scar the landscape, land subsidence that affects roads and buildings, and in some cases water pollution.

With apparently so little going for it, why do we rely so much on coal to meet our energy nee
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

1 Natural groups

Darwin made extensive observations on a great many creatures, including mammals, and noticed that species fell into natural groups, e.g. lions, tigers and leopards have many similarities, and resemble cats. On the basis of his observations, he was able to place mammals in distinct groups.

His work has continued, and we now recognise that mammals have evolved from a common ancestor, and have branched into many different groups, or ‘Orders’. The animation below shows the different O
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

Learning outcomes

By the end of this unit you should be able to:

  • develop an appreciation of the huge variety of different mammals that exist on Earth today;

  • see how fossil evidence can help us to understand evolutionary history;

  • understand how the structure of DNA can help us to detect differences between different species;

  • apply the techniques of DNA analysis to work out which mammals are most closely related to each other;

  • appreciate t
    Author(s): The Open University

    License information
    Related content

    Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

Acknowledgements

Grateful acknowledgement is made to the following:

Except for third party materials and otherwise stated (see terms and conditions), this content is made available under a Creative Commons Attribution-NonCommercial-ShareAlike 2.0 Licence

Figures

Figures 4 and 8 Alber
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

7.1 Introduction

In all eukaryotic cells, proteins that are destined for the plasma membrane or secretion are synthesised in the rough endoplasmic reticulum and enter the Golgi apparatus where they undergo a variety of post-translational modifications, before transfer to the cell surface in secretory vesicles.

  • Which post-translational modifications of proteins occur in which compar
    Author(s): The Open University

    License information
    Related content

    Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

6.2 Endocytosis

Fluid-phase uptake by pinocytosis can be broadly categorised according to the size of the endocytic vesicle and this also relates to how the vesicle is coated (Figure 35). The rate of internalisation is directly proportional to (i) the concentration of extracellular molecules, (ii) the volume enclosed by the vesicle and (iii) the ra
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

4.5 Summary

  1. Targeting sequences at the N-terminus of proteins direct translation across the ER, and act as signals for import to the nucleus, mitochondrion and chloroplasts. Sequences at the C-terminus control traffic through the ER and the Golgi and to peroxisomes.

  2. Glycosylation is directed by signal sequences that act as targets for N-linked glycosylation in the ER and O-linked glycosylation in the Golgi apparatus. Glycosylation and remodelling of polys
    Author(s): The Open University

    License information
    Related content

    Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

4.2 Peptide signal sequences

The distinct chemistry of proteins at the N- and C-termini provides protein molecules with two positionally and chemically unique sites for post-translational modifications and with the means to control their spatial and temporal interactions and position. This feature of proteins is crucial for a variety of biological processes from protein degradation to protein sorting for specific cellular compartments. The N- and C-termini of proteins have distinct roles, and we have already emphasised t
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

3.6 Membrane fusion mediated by viral proteins

Until now, we have focused on the transport of material between different intracellular membrane-bound compartments and fusion of cytoplasmic membranes. This type of fusion is endoplasmic fusion. Another type of membrane fusion, called ectoplasmic fusion, is used by enveloped viruses to infect cells (enveloped viruses have an outer phospholipid bilayer). The biophysical and structural studies of viral proteins involved in the processes of membrane fusion provide a foundation for
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

3.4 The function of Rab proteins in directing traffic

The SNARE proteins are just one component of the vesicle targeting system. Other participants in this process are the Rab family of GTPases, which regulate traffic between different cellular compartments and which are implicated in directing vesicles to their appropriate target compartments. The Rab family is the largest family of GTPases, with more than 30 members. They are distributed in specific organelles where they mediate the assembly of distinctive groups of proteins. Moreover,
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

3.3 Fusion of vesicles with the target membrane

In this section, we shall look at how vesicles fuse with the appropriate target membrane. The targeting of different classes of transport vesicles to their distinct membrane destinations is essential in maintaining the distinct characteristics of the various eukaryotic organelles. Because coat proteins, such as clathrin, are found in different trafficking pathways, it follows that other proteins in the coat must specify the direction of transport of a particular vesicle and its ultimate desti
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

3.1 Introduction

In the following sections, we shall describe the sequential steps involved in the movement of vesicles from one membrane to another (see Figure 9). Some of these steps are quite well defined, but for others there are gaps in our knowledge. Although we have emphasised the importance of proteins as cargo, vesicles also transfer membra
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

2.5 The endocytic pathways and lysosomes

Endocytosis is the process by which cells internalise molecules from the outside, and it includes pinocytosis, the uptake of small soluble molecules in vesicles, and phagocytosis, the internalisation of large insoluble particles. These are two ends of a spectrum as seen microscopically, but the receptors, the subsequent intracellular trafficking pathways and the fate of the internalised molecules, vary depending on the cell type and its functions. The endocytic pathway co
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share