3 Summary

Power output from wind turbines is proportional to the area swept by their blades, and to the cube of wind speed. The narrow range of useable wind speeds restricts the areas where wind energy can be exploited.

Wind power has great potential, but has three main drawbacks. Output depends on intermittent wind speeds, irregular distribution of suitable wind speeds, and occupancy of large areas of land.


Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

Acknowledgements

Grateful acknowledgement is made to the following sources for permission to reproduce material in this unit:

Except for third party materials and otherwise stated (see terms and conditions), this content is made available under a Creative Commons Attribution-NonCommercial-ShareAlike 2.0 Licence

Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

1 Solar energy

The Sun will radiate energy until it ceases thermonuclear fusion, in around 5 billion years. The solar power that enters the Earth's system is 1.1 × 105TW (0.3 × 105 TW to atmospheric heating and 0.8 × 105 TW absorbed at the surface – Figure 1). This is equivalent to a global e
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

3 Hot dry rock (HDR) fields

Heat flow through some parts of the continental crust can be well above normal locally because the underlying rocks contain abnormally high concentrations of uranium, thorium and potassium, which generate considerable heat. To add significantly to surface heat flow and thereby create high-temperature anomalies at shallow depths requires a large volume of such radioactive rocks. This condition is satisfied by some, but not all, granitic igneous intrusions, whose original magma became ch
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

Learning outcomes

By the end of this unit you should be able to:

  • explain the principles that underlie the ability of geothermal energy to deliver useable energy;

  • outline the technologies that are used to harness the power of geothermal energy;

  • discuss the positive and negative aspects of geothermal energy in relation to natural and human aspects of the environment.


Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

6 Summary

Nuclear power generation results from fission of uranium isotopes when bombarded by neutrons. Conventional burner reactors require relatively scarce uranium-235, whereas fast breeder reactors (which have not yet been developed on any significant scale) would exploit more abundant uranium-238.

In the early 21st century over 400 nuclear — mainly burner — reactors produced 16% of global electricity demand.

The UK played a leading role in nuclear power developments during the 1950
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

4.5 Geological criteria for safe radioactive waste disposal

Even in the best of circumstances, containers such as the one shown in Figure 19 will survive for only 100–1000 years, although the glass itself may inhibit the migration of radioactive isotopes for a further 1000 years. So, in view of the long decay times (Author(s): The Open University

4.2 Reactor safety: the Chernobyl incident

By far the worst nuclear reactor accident took place on 26 April 1986 when one of four 1 GW reactors at Chernobyl in the Ukraine released a radioactive cloud over Europe (Figure 17). (See S278 video clips document.) The build-up to this accident has been related to a series of complex chemical reactions induced
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

Introduction

The transformation of radioactive uranium and, in some instances, thorium isotopes provides vastly more energy per unit mass of fuel than any other energy source, except nuclear fusion, and therein lies its greatest attraction.

The potential of nuclear fuels for energy production became a reality when the first experimental atomic pile, built by Enrico Fermi and Léo Szilárd at the University of Chicago, began functioning in December 1942. That led to the manufacture of fissionable mat
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

6 Summary

  1. Waterlogged organic matter accumulates in deltaic, coastal barrier or raised mires to form peat. Coal forms by the compaction and decomposition of peat. Chemical changes imposed by increasing temperature and pressure over time determine the coal rank.

  2. Coalfields can be classified as either exposed or concealed, depending on whether or not the coal-bearing rocks are hidden by younger strata. In most coalfields, mining commenced in the shallower
    Author(s): The Open University

    License information
    Related content

    Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

5 Coal production in the UK early in the 21st century

This section examines the UK's coal industry in a little more detail, to see how the complex interplay of location, economics and politics has led to the rapid demise of an industry that was once at the heart of the UK's economy.

Figure 38 shows production and consumption figures for coal mined in the UK since 1945 a
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

3.1 Environmental aspects of coal mining

Coal produced by both types of mining is used either to fuel electricity generation or for industrial and domestic heating, both of which result in atmospheric pollution, but here we are concerned with direct environmental impact on the land. Surface and underground mining operations cause significantly different environmental problems. Those that surround surface mining are common to any large quarrying operation: sterilization of the land and restoration of quarry sites; dust; and noise whi
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

2.3.4 Geophysical methods — borehole logging

If a core is not recovered from a borehole, another way to assess the types of rock that it penetrates is to measure their physical properties. Mounting a string of electronic instruments behind the drill bit most conveniently does this: it allows the properties of the rock to be monitored as the borehole is drilled. An alternative is to lower instruments down the completed borehole by cable; hence the name wireline logging.

Such logging measures several physical properties of th
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

2.2 Winning coal in former times

Coal was probably first used as a fuel by early Chinese civilizations, and there is evidence for coal working in the UK since Roman times. However, early approaches to mining were limited by the available technology, and left much of the coal behind.

At first, coal was dug from seams exposed at the surface in shallow excavations into valley sides that followed the coal seam. The amount of coal that could be extracted from these trenches and from adits (short horizontal tunnels) w
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

1.6 Impurities in coal

Coal rank reflects the maturity of a coal, but another variable is the ratio of combustible organic matter to inorganic impurities found within the coal. As discussed earlier, impurities result mainly from clay minerals washed into the mire prior to its eventual burial. In addition, some impurities are formed from the plant material itself during coalification.

These inorganic impurities are non-combustible and therefore leave an inert residue or ash after coal combustion. High-a
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

1.4 Coal-forming environments in the geological record

Figure 5 simplifies a typical vertical succession of sedimentary rocks found in many coalfields. The sequence from the base of the section upwards reveals the following:

  1. When a mire starts to form, the first plants take root in underlying clays or sands that form the soil. Their r
    Author(s): The Open University

    License information
    Related content

    Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

7.1 Introduction

In all eukaryotic cells, proteins that are destined for the plasma membrane or secretion are synthesised in the rough endoplasmic reticulum and enter the Golgi apparatus where they undergo a variety of post-translational modifications, before transfer to the cell surface in secretory vesicles.

  • Which post-translational modifications of proteins occur in which compar
    Author(s): The Open University

    License information
    Related content

    Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

4.3 Glycosylation sequences and protein glycosylation

Polysachharide units on proteins may be simple or branched and are almost completely confined to those proteins destined for the cell surface or secretion. The sites and types of glycosylation are determined by the primary structure of the protein and by the availability of enzymes to carry out glycosylation (glycosyltransferases).

N-linked polysaccharides are attached to the –NH2 groups of asparagine and O-linked polysaccharides are attached to the –OH groups of serine a
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

3.5 Cycling and re-use of membranes and traffic proteins

As already mentioned, a vesicle follows a cycle in which it gains its coat, is released from a donor membrane, moves to the target membrane, becomes uncoated, and fuses with the target membrane. Once a vesicle releases its contents by fusing with the target membrane, its components become part of the target membrane or of the lumen of the compartment bounded by the target membrane. The vesicular membrane that has fused with the target membrane needs to be retrieved to form new vesicles. Recov
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

3.3 Fusion of vesicles with the target membrane

In this section, we shall look at how vesicles fuse with the appropriate target membrane. The targeting of different classes of transport vesicles to their distinct membrane destinations is essential in maintaining the distinct characteristics of the various eukaryotic organelles. Because coat proteins, such as clathrin, are found in different trafficking pathways, it follows that other proteins in the coat must specify the direction of transport of a particular vesicle and its ultimate desti
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share