3 Office safety

The relevant safety legislation for offices includes the Display Screen Equipment Regulations, which concern computer monitors and workstations. If electrical devices are used, then the Electricity at Work Regulations will apply. See Appendix A for a list of potential safety problems and considerations for offices and Appendix B for a checklist.

Click 'view document' to open Appendix A.

2 Legal requirements of health and safety in the UK

The Health and Safety at Work etc. Act (HSWA) 1974 states that:

  • It is the duty of every employer, so far as is reasonably practicable, to ensure the health, safety and welfare at work of all employees (this includes students).

  • It is the duty of every employee while at work to take reasonable care of himself (herself) and of other persons who may be affected by his (her) acts or omissions at work.

  • The employees must co
    Author(s): The Open University

    License information
    Related content

    Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

1 History of health and safety

The discipline of health and safety is relatively modern, only developing in the last century. However, throughout the ages people have voiced their concerns about people being exposed to harmful substances. Hippocrates mentions in the 4th century BC that lead miners and workers tended to suffer from diseases. The phrase ‘mad as a hatter’ was coined because mercury used in the hat industry caused mental illness. In 1775 Pott reported that chimney s
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

Learning outcomes

By the end of this unit you should be able to:

  • understand the legal framework of the Health and Safety at Work etc. Act 1974 and Regulations associated with it;

  • understand the employers’, employees’ and visitors’ duties;

  • evaluate hazards and risks in order to carry out a risk assessment;

  • understand the legal requirement to report any accident or dangerous occurrence;

  • develop risk assessments for scientific laborat
    Author(s): The Open University

    License information
    Related content

    Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

Introduction

Ths unit is an adapted extract from the course Postgraduate research skills in science (STM895)

This unit is designed to introduce you to the concepts of health and safety within a science laboratory or in the field. There are a number of legal requirements that must be adhered to before carrying out work in a laboratory. One of these is the necessity to carry out risk assessments on the chemical and biological agents that are to be used as part of your practical work activities. As par
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

References

Bauer, M. W. and Gaskell, G. (2002) Biotechnology: The Making of a Global Controversy, Cambridge University Press.
Bowring, F. (2003) Science, Seeds and Cyborgs, Verso, London.
Campbell, S. (2004) A genetically modified survey, Spiked 
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

5 Summary

At the time of writing (2006) a relatively small number of types of GM crop have been grown globally, in a limited number of countries. The take-up of these crops has been relatively high in countries like the USA and Canada, but very much lower in Europe. However, there is a very rapid increase in the growth of GM crops in developing countries.

The technique most commonly used to introduce new genetic material into dicots has involved the use of a modified soil bacterium, Agrobacter
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

4.3 Golden Rice in the public domain

In January 2000, the successful experiments were announced in a paper published in the American journal Science. This, in itself, is significant. Generally, work on genetic manipulation would be published in one of a number of more specialist journals. Publication in a journal like Science indicates that this was important work, likely to be of interest to a wider audience. In its ‘Notes for Authors’, the journal states that ‘Priority is given to papers that reveal novel c
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

A strategy for ridding the world of VAD?

In July 2000, Time magazine announced that a potential solution to VAD had been found – ‘Golden Rice’ (Figure 8). This was a variety of rice that had been genetically modified to introduce β-carotene into the endosperm (part of the grain of the rice). The name arises from the fact that the otherwise white grains of rice are given a golden colour by the presence of carotenoid compounds.

The announcement came at the height of the global controversy over genetically modified
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

4.1 Vitamin A deficiency

Vitamin A, more properly known as retinol, is an important chemical intermediate in a number of biochemical processes in mammals. It is involved in vision, and is found in the rod cells of the retina of the eye. These cells are particularly important in seeing at low light levels, and night blindness is a symptom of vitamin A deficiency (VAD). Vitamin A is also involved in the proper functioning of the immune system. Children suffering from VAD are prone to serious infections, and often die f
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

3.1 Insect resistance

We will now look briefly at the science underlying the traits introduced into commercial crops, which you explored in Activity 1; a useful place to start is by considering how the property of resistance to insects is acquired by crops.

Insect damage causes huge losses of agricultural crops each year. For example, without co
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

2.2 Using A. tumefaciens to genetically modify plant cells

Genetic engineers have capitalised on the fact that part of the DNA from the Ti plasmid of A. tumefaciens is integrated into the plant genome during the infection process. Ti plasmids can be isolated and a foreign gene spliced in at an appropriate point, making it possible to transfer the novel gene into the plant.

Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

2.1 Crown gall disease: genetic engineering in nature

A. tumefaciens causes crown gall disease in a wide range of dicotyledonous plants. (Dicotyledonous plants, are also known as dicots, have broad leaves with branching veins. An example would be a broad leaved tree like an oak. Narrow leaved plants with parallel grains such as grasses are known as monocotyledonous plant or monocots.) The infection normally occurs at the site of a wound in the plant. The disease gains its name from the large tumour-like swellings, or galls, that o
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

1 Genetic manipulation of plants and GM crops: an introduction

In this unit we will consider the genetic manipulation of plants, and the production of GM crops. A great deal has been written about the science of GM crops and the controversial issues surrounding their introduction around the world. In the study time available, we will focus on a small number of selected issues.

In this unit you'll have the opportunity to learn more about the science that has been used to engineer a range of GM crops, and examine both the science and social concerns
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

Acknowledgements

Grateful acknowledgement is made to the following sources for permission to reproduce material in this unit:

The content acknowledged below is Proprietary and used under licence (not subject to Creative Commons licence). See Terms and Conditions.

Figures

Figure 4 BP (2
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

3 Summary

Hydropower was the earliest means of commercial electricity generation, and currently dominates alternative electricity supply. However, its global capacity for large-scale exploitation is less than six times that currently installed.

Growth of hydropower is slow and its contribution to global electricity supply is falling. Both are due to economic factors, the slow pace of large-scale project construction, the remoteness of high-potential sites, and increasing resistance to the social
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

1 Hydropower

Hydroelectric energy is ultimately solar energy converted through evaporation of water, movement of air masses and precipitation to gravitational potential energy and then to the kinetic energy of water flowing down a slope. That energy was harnessed for centuries through the use of water wheels to drive mills, forges and textile works, before being supplanted by coal-fired steam energy. Electricity generation using water turbines, although first centred on constricted streams, has increasing
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

Learning outcomes

By the end of this unit you should be able to:

  • explain the principles that underlie the ability of hydropower to deliver useable energy;

  • outline the technologies that are used to harness hydropower;

  • discuss the positive and negative aspects of hydropower in relation to natural and human aspects of the environment.


Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

Introduction

Energy from sources other than fossil or nuclear fuels is to a large extent free of the concerns about environmental effects and renewability that characterise those two sources. Each alternative source supplies energy continually, whether or not we use it. Many alternative sources of energy have been used in simple ways for millennia, e.g. wind and water mills, sails, wood burning – but only in the last two centuries has their potential begun to be exploited on an industrial scale. Except
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

4.3 Iron storage

In humans, iron is stored mainly in the bone marrow, spleen and liver. About 10 per cent of all the iron in the body is in storage. Two proteins are involved in iron storage; these are called ferritin and haemosiderin (they also occur in other organisms). We shall only study the better characterised (and simpler!) ferritin.

Each ferritin molecule can store iron up to about 20 per cent of its total mass. This is a very high percentage, considering that less than 0.2 per cen
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share