Make It or Break It: Bond Energy Fall 2007
Make It or Break It: Bond Energy. From Chem 1A General Chemistry - Fall 2007. Stoichiometry of chemical reactions, quantum mechanical description of atoms, the elements and periodic table, chemical bonding, real and ideal gases, thermochemistry, introduction to thermodynamics and equilibrium, acid-base and solubility equilibria, introduction to oxidation-reduction reactions. Closed Captioned webcast available.
Hybrid Systems 1
Structure and Interpretation of Systems and Signals - Spring 2007. This course is an introduction to mathematical modeling techniques used in the design of electronic systems. An important keyword here is "mathematical." Subjects we will cover include continous and discrete signals, with applications to audio, images, video, communications, and control; State-based models, beginning with automata and evolving to LTI systems; Frequency domain models for signals and frequency response for systems,
State II
Structure and Interpretation of Systems and Signals - Spring 2007. This course is an introduction to mathematical modeling techniques used in the design of electronic systems. An important keyword here is "mathematical." Subjects we will cover include continous and discrete signals, with applications to audio, images, video, communications, and control; State-based models, beginning with automata and evolving to LTI systems; Frequency domain models for signals and frequency response for systems,
Linearity
Structure and Interpretation of Systems and Signals - Spring 2007. This course is an introduction to mathematical modeling techniques used in the design of electronic systems. An important keyword here is "mathematical." Subjects we will cover include continous and discrete signals, with applications to audio, images, video, communications, and control; State-based models, beginning with automata and evolving to LTI systems; Frequency domain models for signals and frequency response for systems,
Signals II
Structure and Interpretation of Systems and Signals - Spring 2007. This course is an introduction to mathematical modeling techniques used in the design of electronic systems. An important keyword here is "mathematical." Subjects we will cover include continous and discrete signals, with applications to audio, images, video, communications, and control; State-based models, beginning with automata and evolving to LTI systems; Frequency domain models for signals and frequency response for systems,
Signals I
Structure and Interpretation of Systems and Signals - Spring 2007. This course is an introduction to mathematical modeling techniques used in the design of electronic systems. An important keyword here is "mathematical." Subjects we will cover include continous and discrete signals, with applications to audio, images, video, communications, and control; State-based models, beginning with automata and evolving to LTI systems; Frequency domain models for signals and frequency response for systems,
Determinism
Structure and Interpretation of Systems and Signals - Spring 2007. This course is an introduction to mathematical modeling techniques used in the design of electronic systems. An important keyword here is "mathematical." Subjects we will cover include continous and discrete signals, with applications to audio, images, video, communications, and control; State-based models, beginning with automata and evolving to LTI systems; Frequency domain models for signals and frequency response for systems,
Hybrid Systems III
Structure and Interpretation of Systems and Signals - Spring 2007. This course is an introduction to mathematical modeling techniques used in the design of electronic systems. An important keyword here is "mathematical." Subjects we will cover include continous and discrete signals, with applications to audio, images, video, communications, and control; State-based models, beginning with automata and evolving to LTI systems; Frequency domain models for signals and frequency response for systems,
Responses
Structure and Interpretation of Systems and Signals - Spring 2007. This course is an introduction to mathematical modeling techniques used in the design of electronic systems. An important keyword here is "mathematical." Subjects we will cover include continous and discrete signals, with applications to audio, images, video, communications, and control; State-based models, beginning with automata and evolving to LTI systems; Frequency domain models for signals and frequency response for systems,
Determinism III
Structure and Interpretation of Systems and Signals - Spring 2007. This course is an introduction to mathematical modeling techniques used in the design of electronic systems. An important keyword here is "mathematical." Subjects we will cover include continous and discrete signals, with applications to audio, images, video, communications, and control; State-based models, beginning with automata and evolving to LTI systems; Frequency domain models for signals and frequency response for systems,
Responses III
Structure and Interpretation of Systems and Signals - Spring 2007. This course is an introduction to mathematical modeling techniques used in the design of electronic systems. An important keyword here is "mathematical." Subjects we will cover include continous and discrete signals, with applications to audio, images, video, communications, and control; State-based models, beginning with automata and evolving to LTI systems; Frequency domain models for signals and frequency response for systems,
Responses II
Structure and Interpretation of Systems and Signals - Spring 2007. This course is an introduction to mathematical modeling techniques used in the design of electronic systems. An important keyword here is "mathematical." Subjects we will cover include continous and discrete signals, with applications to audio, images, video, communications, and control; State-based models, beginning with automata and evolving to LTI systems; Frequency domain models for signals and frequency response for systems,
Active Matter with Biological Molecules I
This is one of the Boulder Summer School 2011 lecture videos.
The lecturer is Professor Michael Brenner from harvard.
You can find the lecture notes on the BSS2011 website under the link of "Lecture Notes":
http://boulder.research.yale.edu/Boulder-2011/index.html
Review - Structure and Interpretation of Signals and Systems
Structure and Interpretation of Systems and Signals - Spring 2007. This course is an introduction to mathematical modeling techniques used in the design of electronic systems. An important keyword here is "mathematical." Subjects we will cover include continous and discrete signals, with applications to audio, images, video, communications, and control; State-based models, beginning with automata and evolving to LTI systems; Frequency domain models for signals and frequency response for systems,
11.302J Urban Design Politics (MIT)
This is a seminar about the ways that urban design contributes to the distribution of political power and resources in cities. "Design," in this view, is not some value-neutral aesthetic applied to efforts at urban development but is, instead, an integral part of the motives driving that development. The class investigates the nature of the relations between built form and political purposes through close examination of a wide variety of situations where public and private sector design commissi
Introduction - CS 61C Machine Structures Fall 2007
Machine Structures - Fall 2007. The CS61 series is an introduction to computer science, with particular emphasis on software and on machines from a programmer's point of view. The first two courses considered programming at a high level of abstraction, introducing a range of programming paradigms and common techniques. This course, the last in the series, concentrates on machines and how they carry out the programs you write. The main topics of CS61C involve the low-level system software and th
Introduction - Chemistry 1A Fall 2007
Introduction. From Chem 1A General Chemistry - Fall 2007. Stoichiometry of chemical reactions, quantum mechanical description of atoms, the elements and periodic table, chemical bonding, real and ideal gases, thermochemistry, introduction to thermodynamics and equilibrium, acid-base and solubility equilibria, introduction to oxidation-reduction reactions. Closed Captioned webcast available.
How Far: Gibbs Energy Fall 2007
How Far: Gibbs Energy. From Chem 1A General Chemistry - Fall 2007. Stoichiometry of chemical reactions, quantum mechanical description of atoms, the elements and periodic table, chemical bonding, real and ideal gases, thermochemistry, introduction to thermodynamics and equilibrium, acid-base and solubility equilibria, introduction to oxidation-reduction reactions. Closed Captioned webcast available.
Hierarchical Data 1 - Computer Science 61A Fall 2007
Hierarchical Data 1. From CS 61A The Structure and Interpretation of Computer Programs - Fall 2007. Introduction to programming and computer science. This course exposes students to techniques of abstraction at several levels: (a) within a programming language, using higher-order functions, manifest types, data-directed programming, and message-passing; (b) between programming languages, using functional and rule-based languages as examples. It also relates these techniques to the practical prob
The Science of Ecology and Its Methods Fall 2007
General Biology - Fall 2007. This is a general introduction to plant development, form, and function; population genetics, ecology, and evolution. Intended for students majoring in the biological sciences, but open to all qualified students.
In general at the end of Biology 1B students will be able to: describe the scientific method and explain how it would be applied to a novel problem; explain the consequences of random variation when extrapolated over time; distinguish between positive and