Pages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 14895 result(s) returned

7 Ions and ionic bonding

This section returns to bonding – the way in which atoms are joined to each other. You have already met one type of bonding involving covalent bonds, which is found in molecules. However, this is not the only bonding found in compounds. In this section you will look at ionic bonding and the ionic compounds that contain such bonding. What is the main difference between the covalent compounds you met in Author(s): The Open University

6.3 Chemical formulas

By using symbols, elements can be represented much more conveniently and much more briefly. This method of using symbols can be extended to compounds. You will now look further into this idea using a very familiar compound: water. Recall which atoms there are in a water molecule.

Question 24

Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

2.6.1 (a) Using Lego as a model

In this kind of building set, there are a limited number of types of block and each block has a particular shape. Just as importantly, each one has a particular way in which it can link to other blocks because of the way the studs are arranged.

The blocks can help you see how the atoms link in a molecule of water. Look at Figure 7 where the red brick represents an oxygen atom and the white bricks represent hydrogen atoms. There are only two locations where the hydrogen atoms can join th
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

5 Questions and answers

Question 1

Define each of the following: grammar, phonology, syntax, semantics, noun, verb, subject, object.

Answer

Grammar: The set of unconscious rules or pr
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

Learning outcomes

By the end of this unit you should be able to:

  • recognise definitions and applications of each of the terms printed in bold in the text;

  • understand and apply basic grammatical terminology;

  • describe briefly the different types of sounds used in speech in both acoustic and articulatory terms;

  • outline the key features of human language as compared to the vocalisations of other species;

  • describe the complex psychologi
    Author(s): The Open University

    License information
    Related content

    Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

Introduction

This unit is an adapted extract from the course Biological psychology: exploring the brain (SD226)

This unit looks at how language is understood, which includes hearing and how sounds and words are interpreted by the brain. It takes an interdisciplinary approach and should be of wide general interest.


Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

9 Sedimentation at the end of the Caledonian Orgeny; Section 10 Legacy

The document attached below includes the ninth and tenth sections of Mountain building in Scotland, as well as the index. In these sections, you will find the following subsections:

  • 9.1 Introduction

  • 9.2 The Old Red Sandstone and the Devonian Period

  • 9.3 Distribution and stratigraphy of the Late Silurian to Devonian Basins

  • 9.4 Sedimentation and tectonics in the Midland Valley

      Author(s): The Open University

      License information
      Related content

      Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

8 Multiple plate collisions and the end of the Iapetus Ocean

The document attached below includes the eighth section of Mountain building in Scotland. In this section, you will find the following subsections:

  • 8.1 Introduction

  • 8.2 Palaeocontinental reconstructions

    • 8.2.1 The global view

    • 8.2.2 A model for the closure of the Iapetus Ocean

    • 8.2.3 Summary of Section 8.2

  • 8.3 Tectonics of the Northe
    Author(s): The Open University

    License information
    Related content

    Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

Learning outcomes

When you have studied this unit you should be able to:

  • describe the geological history of the Scottish Highlands;

  • give examples of igneous, metamorphic and structurally complex rocks.


Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

Acknowledgements

Except for third party materials and otherwise stated (see terms and conditions), this content is made available under a Creative Commons Attribution-NonCommercial-ShareAlike 2.0 Licence

Grateful acknowledgement is made to the following sources for permission to reproduce material in this unit:

Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

12.7 Summary of Section 12

For precise localisation of a sound source, binaural cues are required.

Two types of binaural cue are used to localise non-continuous sounds in the horizontal plane: interaural time differences, which are most efficient for low-frequency sounds (20–1500 Hz) and interaural intensity cues, which are important for high-frequency sounds (1500–20 000 Hz). The frequency responses in the superior olive reflect these differences. The medial superior olive includes neurons that are responsiv
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

12.6 Distance cues

There are two main cues available that allow us to judge the distance to a sound source. The first of these is the sound pressure level. Sound pressure level drops by 6 dB each time the distance that a sound travels doubles. In other words, if the sound pressure level of a sound is 60 dB SPL when its source is 1 m from you, then it will be 54 dB SPL if you move back another metre so that you are now 2 m away from its source. Therefore lower sound pressure levels indicate a greater distance. A
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

12.4 Interaural intensity differences

The brain has another process for localizing high-frequency sounds (above 1500 Hz): interaural intensity differences.

Where does processing of interaural intensity differences take place?


Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

12.3 Interaural time delays: continuous tones

Coincidence detectors and delay lines cannot be used to localise a continuous tone.

Why?

Answer

Because, a continuous tone is always present at both ears and if we
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

12.2 Interaural time delays: non-continuous sounds

The average distance between human ears is about 20 cm. Therefore, if a sudden noise comes at you from the right, perpendicular to your head, it will reach your right ear 0.6 ms before it reaches your left ear. For a sound coming from directly in front of you there will be no delay, and at angles between, the delay will be between 0 and 0.6 ms. Therefore there is a simple relationship between the location of the sound source and the interaural delay. It is this delay that enables us to locali
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

12.1 Localisation of sound in the horizontal plane

While information about frequency and intensity is essential for interpreting sounds in our environment, sound localisation can be of critical importance for survival. For example, if you carelessly cross the street, your localisation of a car's horn may be all that saves you. Our current understanding of the mechanisms underlying sound localisation suggests that we use different techniques for locating sources in the horizontal plane and vertical plane.

Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

11.4 Signal duration

Since hearing is largely a matter of stimulus reception over time, we would expect time to influence the perception of sound. It has been known for many years that both absolute thresholds and the loudness of sounds depend upon signal duration. The studies of absolute threshold described earlier were all carried out with tone bursts of relatively long duration. For durations exceeding 500 ms, the sound intensity at threshold is roughly independent of duration. However for durations of less th
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

11.3 Frequency selectivity

In preceding sections we examined two ways in which the auditory system may code frequency information: the place theory and phase locking. In this section we will look at the psychophysical evidence for place coding on the basilar membrane by examining the ability of the auditory system to resolve the components of sinusoidal waves in a complex sound – a phenomenon known as frequency selectivity.

The perception of a sound depends not only on its own frequency and intensity but also o
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

3.7.1 Summary of Sections 3.4 to 3.7

Hair cells are found in the organ of Corti and run the length of the basilar membrane. They transform mechanical energy into neural signals.

When the basilar membrane vibrates in response to sound, hair cells located at the site of maximal vibration on the basilar membrane are stimulated. This means that the mechanical properties of the membrane allow the auditory system to distinguish one frequency from another by the location on the membrane that is maximally excited by a particular f
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

Summary

The ear is made up of the outer, middle and inner ears. The outer ear consists of the pinna, the external auditory canal and the tympanic membrane. The middle ear is air-filled and contains the middle ear ossicles. The inner ear is fluid-filled and contains the cochlea, the semicircular canals and the vestibule.

Sound in the external environment is channelled into the auditory meatus by the pinna and impinges on the tympanic membrane causing it to vibrate. These vibrations are transmitt
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

Pages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745