7.5 Emission from spiralling electrons: synchrotron radiation

Active galaxies provide a prime example of high energy processes operating in the Universe. This unit gives an overview of active galaxies, including the supermassive black holes that power the engines at their centres, and the emission processes by which we detect and study them. It also gives practice in mathematical techniques for analysing data and theoretical models.

7.4 Faraday depolarization

Active galaxies provide a prime example of high energy processes operating in the Universe. This unit gives an overview of active galaxies, including the supermassive black holes that power the engines at their centres, and the emission processes by which we detect and study them. It also gives practice in mathematical techniques for analysing data and theoretical models.

7.3 Polarization of electromagnetic radiation

Active galaxies provide a prime example of high energy processes operating in the Universe. This unit gives an overview of active galaxies, including the supermassive black holes that power the engines at their centres, and the emission processes by which we detect and study them. It also gives practice in mathematical techniques for analysing data and theoretical models.

7.2 Free-free radiation

Active galaxies provide a prime example of high energy processes operating in the Universe. This unit gives an overview of active galaxies, including the supermassive black holes that power the engines at their centres, and the emission processes by which we detect and study them. It also gives practice in mathematical techniques for analysing data and theoretical models.

7.1 Blackbody radiation

Active galaxies provide a prime example of high energy processes operating in the Universe. This unit gives an overview of active galaxies, including the supermassive black holes that power the engines at their centres, and the emission processes by which we detect and study them. It also gives practice in mathematical techniques for analysing data and theoretical models.

6 The key questions

Active galaxies provide a prime example of high energy processes operating in the Universe. This unit gives an overview of active galaxies, including the supermassive black holes that power the engines at their centres, and the emission processes by which we detect and study them. It also gives practice in mathematical techniques for analysing data and theoretical models.

5 Distances in extragalactic astronomy

Active galaxies provide a prime example of high energy processes operating in the Universe. This unit gives an overview of active galaxies, including the supermassive black holes that power the engines at their centres, and the emission processes by which we detect and study them. It also gives practice in mathematical techniques for analysing data and theoretical models.

4.2 Activity 3: Stars orbiting our local supermassive black hole

Active galaxies provide a prime example of high energy processes operating in the Universe. This unit gives an overview of active galaxies, including the supermassive black holes that power the engines at their centres, and the emission processes by which we detect and study them. It also gives practice in mathematical techniques for analysing data and theoretical models.

4.1 The Milky Way

Active galaxies provide a prime example of high energy processes operating in the Universe. This unit gives an overview of active galaxies, including the supermassive black holes that power the engines at their centres, and the emission processes by which we detect and study them. It also gives practice in mathematical techniques for analysing data and theoretical models.

3.5 Example 1

Active galaxies provide a prime example of high energy processes operating in the Universe. This unit gives an overview of active galaxies, including the supermassive black holes that power the engines at their centres, and the emission processes by which we detect and study them. It also gives practice in mathematical techniques for analysing data and theoretical models.

3.4 The Eddington Limit

Active galaxies provide a prime example of high energy processes operating in the Universe. This unit gives an overview of active galaxies, including the supermassive black holes that power the engines at their centres, and the emission processes by which we detect and study them. It also gives practice in mathematical techniques for analysing data and theoretical models.

3.3 Luminosities

Active galaxies provide a prime example of high energy processes operating in the Universe. This unit gives an overview of active galaxies, including the supermassive black holes that power the engines at their centres, and the emission processes by which we detect and study them. It also gives practice in mathematical techniques for analysing data and theoretical models.

3.2 QSO spectra

Active galaxies provide a prime example of high energy processes operating in the Universe. This unit gives an overview of active galaxies, including the supermassive black holes that power the engines at their centres, and the emission processes by which we detect and study them. It also gives practice in mathematical techniques for analysing data and theoretical models.

3.1 AGNs

Active galaxies provide a prime example of high energy processes operating in the Universe. This unit gives an overview of active galaxies, including the supermassive black holes that power the engines at their centres, and the emission processes by which we detect and study them. It also gives practice in mathematical techniques for analysing data and theoretical models.

2 Black holes: a reminder

Active galaxies provide a prime example of high energy processes operating in the Universe. This unit gives an overview of active galaxies, including the supermassive black holes that power the engines at their centres, and the emission processes by which we detect and study them. It also gives practice in mathematical techniques for analysing data and theoretical models.

1 Meet your first active galactic nuclei

Active galaxies provide a prime example of high energy processes operating in the Universe. This unit gives an overview of active galaxies, including the supermassive black holes that power the engines at their centres, and the emission processes by which we detect and study them. It also gives practice in mathematical techniques for analysing data and theoretical models.

Next steps

This unit introduces the parts of the body and processes involved in the development of diabetes.

4.1 Trilobites

Fossils are a glimpse into the distant past and fascinate young and old alike. This unit will introduce you to the explosion of evolution that took place during the Palaeozoic era. You will look at the many different types of creatures that existed at that time and how they managed to evolve to exist on land.

3 The Silurian Period and the invasion of the land

Fossils are a glimpse into the distant past and fascinate young and old alike. This unit will introduce you to the explosion of evolution that took place during the Palaeozoic era. You will look at the many different types of creatures that existed at that time and how they managed to evolve to exist on land.

2 The Ordovician seas

Fossils are a glimpse into the distant past and fascinate young and old alike. This unit will introduce you to the explosion of evolution that took place during the Palaeozoic era. You will look at the many different types of creatures that existed at that time and how they managed to evolve to exist on land.