Atoms and Heat I

Description not set

2-D Kinematics; Forces and Newton's Laws 2

Description not set

2-D Kinematics; Forces and Newton's Laws

Description not set

1-D and 2-D Kinematics, Projectile Motion 2

Description not set

7 Unit summary

James Clerk Maxwell (1831-1879) is arguably the father of electromagnetism, and unarguably one of the greatest physicists ever. Einstein called Maxwell's equations 'the most important event in physics since Newton's time, not only because of their wealth of content, but also because they form a pattern for a new type of law'. This unit will examine Maxwell's greatest triumph, the prediction that electromagnetic waves can propagate vast distances through empty space and the realisation that light

6 Appendix: a note on displacement current density

James Clerk Maxwell (1831-1879) is arguably the father of electromagnetism, and unarguably one of the greatest physicists ever. Einstein called Maxwell's equations 'the most important event in physics since Newton's time, not only because of their wealth of content, but also because they form a pattern for a new type of law'. This unit will examine Maxwell's greatest triumph, the prediction that electromagnetic waves can propagate vast distances through empty space and the realisation that light

5.2 The energy of electromagnetic waves

James Clerk Maxwell (1831-1879) is arguably the father of electromagnetism, and unarguably one of the greatest physicists ever. Einstein called Maxwell's equations 'the most important event in physics since Newton's time, not only because of their wealth of content, but also because they form a pattern for a new type of law'. This unit will examine Maxwell's greatest triumph, the prediction that electromagnetic waves can propagate vast distances through empty space and the realisation that light

4 Maxwell's equations

James Clerk Maxwell (1831-1879) is arguably the father of electromagnetism, and unarguably one of the greatest physicists ever. Einstein called Maxwell's equations 'the most important event in physics since Newton's time, not only because of their wealth of content, but also because they form a pattern for a new type of law'. This unit will examine Maxwell's greatest triumph, the prediction that electromagnetic waves can propagate vast distances through empty space and the realisation that light

3.3 The Ampère–Maxwell law in action

James Clerk Maxwell (1831-1879) is arguably the father of electromagnetism, and unarguably one of the greatest physicists ever. Einstein called Maxwell's equations 'the most important event in physics since Newton's time, not only because of their wealth of content, but also because they form a pattern for a new type of law'. This unit will examine Maxwell's greatest triumph, the prediction that electromagnetic waves can propagate vast distances through empty space and the realisation that light

3.2 Generalising Ampère's law

James Clerk Maxwell (1831-1879) is arguably the father of electromagnetism, and unarguably one of the greatest physicists ever. Einstein called Maxwell's equations 'the most important event in physics since Newton's time, not only because of their wealth of content, but also because they form a pattern for a new type of law'. This unit will examine Maxwell's greatest triumph, the prediction that electromagnetic waves can propagate vast distances through empty space and the realisation that light

3.1 Limitations of Ampère's law

James Clerk Maxwell (1831-1879) is arguably the father of electromagnetism, and unarguably one of the greatest physicists ever. Einstein called Maxwell's equations 'the most important event in physics since Newton's time, not only because of their wealth of content, but also because they form a pattern for a new type of law'. This unit will examine Maxwell's greatest triumph, the prediction that electromagnetic waves can propagate vast distances through empty space and the realisation that light

2 The equation of continuity

James Clerk Maxwell (1831-1879) is arguably the father of electromagnetism, and unarguably one of the greatest physicists ever. Einstein called Maxwell's equations 'the most important event in physics since Newton's time, not only because of their wealth of content, but also because they form a pattern for a new type of law'. This unit will examine Maxwell's greatest triumph, the prediction that electromagnetic waves can propagate vast distances through empty space and the realisation that light

1 Maxwell's greatest triumph

James Clerk Maxwell (1831-1879) is arguably the father of electromagnetism, and unarguably one of the greatest physicists ever. Einstein called Maxwell's equations 'the most important event in physics since Newton's time, not only because of their wealth of content, but also because they form a pattern for a new type of law'. This unit will examine Maxwell's greatest triumph, the prediction that electromagnetic waves can propagate vast distances through empty space and the realisation that light

Introduction

James Clerk Maxwell (1831-1879) is arguably the father of electromagnetism, and unarguably one of the greatest physicists ever. Einstein called Maxwell's equations 'the most important event in physics since Newton's time, not only because of their wealth of content, but also because they form a pattern for a new type of law'. This unit will examine Maxwell's greatest triumph, the prediction that electromagnetic waves can propagate vast distances through empty space and the realisation that light

This unit focuses on the creation of a semiconductor transistor – a versatile tiny transistor that is now at the heart of the electronics industry. In the video clips, the history of the incredible shrinking chip, its Scottish connections and an explanation of the physics that make chips work are accompanied by a reconstruction of making a transistor using the crude techniques of yesteryear.

Except for third party materials and otherwise stated (see <

Initial queries into the notion of Power Users of Technology

In this paper I shall address and investigate some ideas and hypotheses, which I find very important in order to understand the notion of “Power Users of Technology”. The Power Users research initiative has noted and emphasises
the heavy increase in children’s, adolescents’ or young people’s use of technology. What distinguishes the Power User research initiative and makes it qualitatively different from similar studies is that it is not merely looking into changed patterns in adolesce

Combinatorics: The Fine Art of Counting

Love math but bored in math class? This is the course for you! Combinatorics is a fascinating branch of mathematics that applies to problems ranging from card games to quantum physics to the internet. The only pre-requisite is basic algebra; however we will be covering a lot of material. A mathematically agile mind will be helpful.

The Basic Concepts Lecture 4 (October 26, 2009)

science, physics, particle physics, simple quantum field, vectors, field theory, particle, wave, momentum, occupation number, harmonic oscillation, position, reaction, annihilation, wave function, probability, atom, decay, photon, creation, energy, bra-ke

Gödel, Escher, Bach

What do one mathematician, one artist, and one musician all have in common? Are you interested in zen Buddhism, math, fractals, logic, paradoxes, infinities, art, language, computer science, physics, music, intelligence, consciousness and unified theories? Get ready to chase me down a rabbit hole into Douglas Hofstadter's Pulitzer Prize winning book Gödel, Escher, Bach. Lectures will be a place for crazy ideas to bounce around as we try to pace our way through this enlightening tome. You will b

Methods of Math Physics

Methods of Math Physics - UNSPECIFIED
Keywords:mathbank