Pages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 8042 result(s) returned

2.4 Obesity – an evolutionary perspective

If you were now to take a broader biological approach to the data discussed in the previous section you might still be puzzled. Excess body weight leads to a variety of diseases, including diabetes, osteoarthritis and so on – surely this must reduce overall biological fitness.

SAQ 21

Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

2.3 Experimental studies of energy balance

The energy that a human takes in, primarily in food or nutritive fluids, has to be balanced by the energy lost in various ways. Some energy is used to maintain basic metabolic processes, some in physical activity while the remainder is lost as heat, or in the faeces or urine. If energy input and output do not balance, then the residue must either result in a loss or a gain in body weight.

One way of estimating these energy fluxes is to use the technique of whole room indirect calorim
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

1.7.1 Unit summary

1. A coordinate system provides a systematic means of specifying the position of a particle. A system in one dimension involves choosing an origin and a positive direction in which values of the position coordinate increase. Values of the position coordinate are positive or negative numbers multiplied by an appropriate unit of length, usually the SI unit of length, the metre (m).

2. The movement of a particle along a line can be described graphically by plotting values of the particle's
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

1.6.4 Drop-towers revisited

In Section 1 we described how research into near weightless conditions can be carried out on Earth by using a drop-tower or a drop-shaft (Figure 41). We are now in a position to examine drop-shafts in more detail (Example 3).

Figure 41
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

1.6.3 The acceleration due to gravity

In the absence of air resistance, an object falling freely under the influence of the Earth's gravity, close to the surface of the Earth, experiences an acceleration of about 9.81 m s−2 in the downward direction. The precise value of the magnitude is indicated by the symbol g and varies slightly from place to place due to variations in surface altitude, the effect of the Earth's rotation and variations in the internal composition of the Earth. Some typical values f
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

1.6.2 The equations of uniformly accelerated motion

Equations 22, 23 and 24 provide a complete description of uniformly accelerated motion. By combining them appropriately, it is possible to solve a wide class of problems concerning the kinematics of uniformly accelerated motion. Nonetheless, those particular equations are not always the best starting point for the most common problems. For example, it is often the case that we want to know the displacement from the initial position after some specified period of constant acceleration, rather
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

1.5.3 A note on functions and derivatives

This subsection introduces two crucially important mathematical ideas, functions and derivatives, both of which are used throughout physics.


Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

1.5.2 Instantaneous acceleration

The procedure of Question 15 for determining the instantaneous velocity of the car can be carried out for a whole set of different times and the resulting values of vx can be plotted against t to form a graph. This has been done in Figure 28, which shows how the velocity varies with time. At time t = 0 s, the car has zero velocity because it starts from rest. At later times, the velocity is positive because the car moves in the direction of in
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

1.5.1 Instantaneous velocity

Uniform motion is simple to describe, but is rarely achieved in practice. Most objects do not move at a precisely constant velocity. If you drop an apple it will fall downwards, but it will pick up speed as it does so (Figure 24), and if you drive along a straight road you are likely to encounter some traffic that will force you to vary your speed from time to time. For the most part, real motions are non-uniform motions.

Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

Introduction

This unit is an adapted extract from the course Biological psychology: exploring the brain (SD226)

This unit looks at how language is understood, which includes hearing and how sounds and words are interpreted by the brain. It takes an interdisciplinary approach and should be of wide general interest.


Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

12.5 Localisation of sound in the vertical plane

Much of our ability to localise sound in the vertical plane is due to the shape of the outer ear, in particular the pinna. The pinnae provide a monaural cue to localisation. The bumps and ridges on the pinnae produce reflections, and delays between the direct path and the reflected path make vertical localisation possible. Vertical localisation is seriously impaired if the convolutions of the pinnae are covered.


Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

11.5 Summary of sections 8 to 11

In these sections we have described some of the quantitative relationships between the physical dimensions of simple sounds and their subjective psychological dimensions. The physical dimension of intensity, or pressure amplitude, given in decibels (dB), directly affects loudness. Frequency of pressure changes, in hertz (Hz), mainly determines pitch.

The lowest threshold value and hence the maximal sensitivity for humans is in the region of 3000 Hz.

The quantitative relationship b
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

3.1 Introduction

In 2000, the House of Lords Select Committee on Science and Technology produced an influential report that highlighted the complex and increasingly problematic relationship between contemporary science and society, particularly in the field of biotechnology (House of Lords Select Committee on Science and Technology, 2000). The report argued that many of these concerns were seen by the public to be the result of a perceived lack of transparency in the relationship between science, industry, pu
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

1.2 Time, space, temperature and energy

The conventional view of the Universe is that, at the very instant of the Big Bang, the Universe came into being. There was no ‘before’ this instant since the Big Bang marked the creation of time. No location for this event can be specified since the Big Bang marked the creation of space. All that can be discussed are times after the Big Bang, and things that happen in the space created as a result of it. This is a difficult concept to visualize; but please bear with us and examine the co
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

1.5.8 Bibliographic software

If you are considering taking your studies further you might like to consider using bibliographic software. Bibliographic software can be used to sort references, annotate them, manage quotations or create reading lists.

There are several software packages on the market. Some are listed below.

1.4.2 P is for Presentation

By presentation, we mean, the way in which the information is communicated. You might want to ask yourself:

  • Is the language clear and easy to understand?

  • Is the information clearly laid out so that it is easy to read?

  • Are the fonts large enough and clear?

  • Are the colours effective? (e.g. white or yellow on black can be difficult to read)

  • If there are graphics or photos, do they help
    Author(s): The Open University

    License information
    Related content

    Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

10 ‘Science for all?’ A look at some contexts

The following statement is from the science National Curriculum in England published in 2000.

The importance of science

Science stimulates and excites pupils’ curiosity about phenomena and events in the world around them. It also satisfies this curiosity with knowledge. Because science links direct practical experience with ideas, it can engage learners at many levels. Scientific meth
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

7.1 Introduction

I now want to take forward the notion of a science curriculum for public understanding, identifying problems and opportunities. Our guide in what follows is the Beyond 2000  document, which emerged from a working group led by UK-based science educators, working collaboratively with science teachers, education researchers, professional scientists within universities, indust
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

5 Education for democracy?

We are surrounded by, and interact increasingly with, scientific and technological products – for example, electronic miracles such as DVDs, mobile phones or microwave ovens; what is debatable is the extent to which we need to know anything of their workings to co-exist happily with them (see, for example, Chapman, 1991). Perhaps knowing something about the workings of mobile phones, for example, will help users assess the extent of any health risk they pose. Arguments for disseminating sci
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

3.1.5 (E) Historical development of scientific knowledge

Pupils should be taught some of the historical background to the development of scientific knowledge.


Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

Pages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403