5.3.2 Klein bottle
Surfaces are a special class of topological spaces that crop up in many places in the world of mathematics. In this unit, you will learn to classify surfaces and will be introduced to such concepts as homeomorphism, orientability, the Euler characteristic and the Classification Theorum.
5.3.1 Torus
Surfaces are a special class of topological spaces that crop up in many places in the world of mathematics. In this unit, you will learn to classify surfaces and will be introduced to such concepts as homeomorphism, orientability, the Euler characteristic and the Classification Theorum.
5.3 Neighbourhoods
Surfaces are a special class of topological spaces that crop up in many places in the world of mathematics. In this unit, you will learn to classify surfaces and will be introduced to such concepts as homeomorphism, orientability, the Euler characteristic and the Classification Theorum.
5.2.1 Proof
Surfaces are a special class of topological spaces that crop up in many places in the world of mathematics. In this unit, you will learn to classify surfaces and will be introduced to such concepts as homeomorphism, orientability, the Euler characteristic and the Classification Theorum.
5.2 The identification topology
Surfaces are a special class of topological spaces that crop up in many places in the world of mathematics. In this unit, you will learn to classify surfaces and will be introduced to such concepts as homeomorphism, orientability, the Euler characteristic and the Classification Theorum.
5.1 Identifying edges of a polygon
Surfaces are a special class of topological spaces that crop up in many places in the world of mathematics. In this unit, you will learn to classify surfaces and will be introduced to such concepts as homeomorphism, orientability, the Euler characteristic and the Classification Theorum.
4.6.1 Remarks
Surfaces are a special class of topological spaces that crop up in many places in the world of mathematics. In this unit, you will learn to classify surfaces and will be introduced to such concepts as homeomorphism, orientability, the Euler characteristic and the Classification Theorum.
4.6 The Classification Theorem
Surfaces are a special class of topological spaces that crop up in many places in the world of mathematics. In this unit, you will learn to classify surfaces and will be introduced to such concepts as homeomorphism, orientability, the Euler characteristic and the Classification Theorum.
4.5.2 n-fold toruses
Surfaces are a special class of topological spaces that crop up in many places in the world of mathematics. In this unit, you will learn to classify surfaces and will be introduced to such concepts as homeomorphism, orientability, the Euler characteristic and the Classification Theorum.
4.5.1 Surfaces with holes
Surfaces are a special class of topological spaces that crop up in many places in the world of mathematics. In this unit, you will learn to classify surfaces and will be introduced to such concepts as homeomorphism, orientability, the Euler characteristic and the Classification Theorum.
4.5 Some general results
Surfaces are a special class of topological spaces that crop up in many places in the world of mathematics. In this unit, you will learn to classify surfaces and will be introduced to such concepts as homeomorphism, orientability, the Euler characteristic and the Classification Theorum.
4.4 Historical note on the Euler characteristic
Surfaces are a special class of topological spaces that crop up in many places in the world of mathematics. In this unit, you will learn to classify surfaces and will be introduced to such concepts as homeomorphism, orientability, the Euler characteristic and the Classification Theorum.
4.3 The Euler characteristic
Surfaces are a special class of topological spaces that crop up in many places in the world of mathematics. In this unit, you will learn to classify surfaces and will be introduced to such concepts as homeomorphism, orientability, the Euler characteristic and the Classification Theorum.
4.2 Subdivisions
Surfaces are a special class of topological spaces that crop up in many places in the world of mathematics. In this unit, you will learn to classify surfaces and will be introduced to such concepts as homeomorphism, orientability, the Euler characteristic and the Classification Theorum.
4.1 Nets on surfaces
Surfaces are a special class of topological spaces that crop up in many places in the world of mathematics. In this unit, you will learn to classify surfaces and will be introduced to such concepts as homeomorphism, orientability, the Euler characteristic and the Classification Theorum.
3.3 The projective plane
Surfaces are a special class of topological spaces that crop up in many places in the world of mathematics. In this unit, you will learn to classify surfaces and will be introduced to such concepts as homeomorphism, orientability, the Euler characteristic and the Classification Theorum.
3.2.1 Remarks
Surfaces are a special class of topological spaces that crop up in many places in the world of mathematics. In this unit, you will learn to classify surfaces and will be introduced to such concepts as homeomorphism, orientability, the Euler characteristic and the Classification Theorum.
3.2 Orientability
Surfaces are a special class of topological spaces that crop up in many places in the world of mathematics. In this unit, you will learn to classify surfaces and will be introduced to such concepts as homeomorphism, orientability, the Euler characteristic and the Classification Theorum.
3.1.1 Inserting half-twists
Surfaces are a special class of topological spaces that crop up in many places in the world of mathematics. In this unit, you will learn to classify surfaces and will be introduced to such concepts as homeomorphism, orientability, the Euler characteristic and the Classification Theorum.
3.1 Surfaces with twists
Surfaces are a special class of topological spaces that crop up in many places in the world of mathematics. In this unit, you will learn to classify surfaces and will be introduced to such concepts as homeomorphism, orientability, the Euler characteristic and the Classification Theorum.