3.3 Equation of a plane in three-dimensional Euclidean space

Attempts to answer problems in areas as diverse as science, technology and economics involve solving simultaneous linear equations. In this unit we look at some of the equations that represent points, lines and planes in mathematics. We explore concepts such as Euclidean space, vectors, dot products and conics.

At the end of this unit you should be able to:

contribute to the implementation of project activities;

monitor, and recommend adjustments to, activities, resources and plans;

maintain communications with project stakeholders;

contribute to developing solutions to project problems.

Original Copyright © 2007 The Open University. Now made available within the Creative Commons framewo

The focus of this unit is on implementing a project. The first part considers how the activities of a project start. Although planning and action run side by side, it is often difficult to initiate action to progress the first tasks. Once things start to happen, the project enters a new stage. Management of the project changes, from stimulating the initial action to monitoring and reviewing it in order to control the project's progress. Control systems are essential in managing a project of a

Analyzing and Developing Role-Based Access Control Models

Role-based access control (RBAC) has become today's dominant access control model, and many of its theoretical and practical aspects are well understood. However, certain aspects of more advanced RBAC models, such as the relationship between permission usage and role activation and the interaction between inheritance and constraints, remain poorly understood. Moreover, the computational complexity of some important problems in RBAC remains unknown. In this thesis we consider these issues, develo

By the end of this unit you should be able to:

understand the common issues that arise in projects;

practise project management tools and techniques;

understand how to avoid some of the common problems that arise in project management;

practise project management decisions;

understand the interaction of the rational and the more subjective and affective elements of project management.

The default learning path in this unit takes a problem-based approach to learning about project management. You work through a realistically complex and messy example of project management and engage in a series of tasks associated with the case-study materials. At each stage of the case study you have access to project management resources which describe useful approaches to project management and introduce useful frameworks and tools. However, these are provided as an aid to your learning n

Om de prehistorie in te leiden, maakte ik gebruik van de documentaire *Het prehistorisch leven* van Ooggetuigen. De verwerking bestaat uit vijf werkbladen die je hier …

Optellen tot 100 : Rekenvoordelen

Bundel met toets waarbij de leerlingen de wisseleigenschap leren gebruiken bij optellingen tot honderd. Eerst wordt de getalstructuur (T/E en splitsen) geoefend om daarna over te gaan naar de oefeningen.

Je kan zowel de bewerkbare …

The content acknowledged below is Proprietary (see terms and conditions) and is used under licence.

## Unit Image

All other materials included in this unit are derived from content originated at the Open University.

## Author(s):

*People and Project Management for IT*, Maidenhead, McGraw-Hill.

*Project Skills*, Oxford, Butterworth-Heinemann.

*Harvard Business Review*, Marchâ€“April.

*Power into Art*

*1.3 Parallel and perpendicular lines Attempts to answer problems in areas as diverse as science, technology and economics involve solving simultaneous linear equations. In this unit we look at some of the equations that represent points, lines and planes in mathematics. We explore concepts such as Euclidean space, vectors, dot products and conics.*

*1.2 Lines Attempts to answer problems in areas as diverse as science, technology and economics involve solving simultaneous linear equations. In this unit we look at some of the equations that represent points, lines and planes in mathematics. We explore concepts such as Euclidean space, vectors, dot products and conics.*

*1.1 Points, lines and distances in two-dimensional Euclidean space Attempts to answer problems in areas as diverse as science, technology and economics involve solving simultaneous linear equations. In this unit we look at some of the equations that represent points, lines and planes in mathematics. We explore concepts such as Euclidean space, vectors, dot products and conics.*

*Unit summary and outcomes This unit explores reasons for studying mathematics, practical applications of mathematical ideas and aims to help you to recognise mathematics when you come across it. It introduces the you to the graphics calculator, and takes you through a series of exercises from the Calculator Book, Tapping into Mathematics With the TI-83 Graphics Calculator. The unit ends by asking you to reflect on the process of studying mathematics. In order to complete this unit you will need to have obtained a Texas I*

*3.3 Skills in learning mathematics This unit explores reasons for studying mathematics, practical applications of mathematical ideas and aims to help you to recognise mathematics when you come across it. It introduces the you to the graphics calculator, and takes you through a series of exercises from the Calculator Book, Tapping into Mathematics With the TI-83 Graphics Calculator. The unit ends by asking you to reflect on the process of studying mathematics. In order to complete this unit you will need to have obtained a Texas I*

*3.2 Keeping a record: a learning file This unit explores reasons for studying mathematics, practical applications of mathematical ideas and aims to help you to recognise mathematics when you come across it. It introduces the you to the graphics calculator, and takes you through a series of exercises from the Calculator Book, Tapping into Mathematics With the TI-83 Graphics Calculator. The unit ends by asking you to reflect on the process of studying mathematics. In order to complete this unit you will need to have obtained a Texas I*

*3.1 Spotlight on study This unit explores reasons for studying mathematics, practical applications of mathematical ideas and aims to help you to recognise mathematics when you come across it. It introduces the you to the graphics calculator, and takes you through a series of exercises from the Calculator Book, Tapping into Mathematics With the TI-83 Graphics Calculator. The unit ends by asking you to reflect on the process of studying mathematics. In order to complete this unit you will need to have obtained a Texas I*

*3 Aims This unit explores reasons for studying mathematics, practical applications of mathematical ideas and aims to help you to recognise mathematics when you come across it. It introduces the you to the graphics calculator, and takes you through a series of exercises from the Calculator Book, Tapping into Mathematics With the TI-83 Graphics Calculator. The unit ends by asking you to reflect on the process of studying mathematics. In order to complete this unit you will need to have obtained a Texas I*

*Pressing onwards This unit explores reasons for studying mathematics, practical applications of mathematical ideas and aims to help you to recognise mathematics when you come across it. It introduces the you to the graphics calculator, and takes you through a series of exercises from the Calculator Book, Tapping into Mathematics With the TI-83 Graphics Calculator. The unit ends by asking you to reflect on the process of studying mathematics. In order to complete this unit you will need to have obtained a Texas I*

*A pressing engagement This unit explores reasons for studying mathematics, practical applications of mathematical ideas and aims to help you to recognise mathematics when you come across it. It introduces the you to the graphics calculator, and takes you through a series of exercises from the Calculator Book, Tapping into Mathematics With the TI-83 Graphics Calculator. The unit ends by asking you to reflect on the process of studying mathematics. In order to complete this unit you will need to have obtained a Texas I*

*
Pages
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
Copyright 2009 University of Nottingham
*