Pages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 9534 result(s) returned

3.6 Summary of Section 3

  1. The electronic configuration of an atom can be obtained by allocating its electrons to s, p, d and f sub-shells in the order given by Figure 21. This procedure generates a periodicity in electronic configuration which matches that of the Periodic Table.

  2. The typical elements have
    Author(s): The Open University

    License information
    Related content

    Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

1.7 Summary of Section 1

  • All materials are made of atoms of about 120 different chemical elements, each element being characterised by an atomic number which lies in the range 1–120.

  • Each atom has a nucleus where most of its mass resides. The atomic number is equal to the number of units of positive charge on the nucleus, the number of protons in the nucleus, and to the number of surrounding electrons in the neutral atom.

  • The nuclei of nearly all atom
    Author(s): The Open University

    License information
    Related content

    Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

3.2 Stationary states and scattering in one dimension

The key idea of the stationary-state approach is to avoid treating individual particles, and to consider instead the scattering of a steady intense beam of particles, each particle having the same energy E0. It is not possible to predict the exact behaviour of any individual particle but, if the incident beam is sufficiently intense, the result of the scattering will be reflected and transmitted beams with steady intensities that are determined by the reflection and transmis
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

1 What are scattering and tunnelling?

The phenomenon of scattering was an important topic in physics long before the development of wave mechanics. In its most general sense, scattering is a process in which incident particles (or waves) are affected by interaction with some kind of target, quite possibly another particle (Figure 1). The interac
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

6.2 An outline of vertebrate evolution

Let's now place the early evolution of tetrapods in perspective by taking an overview of the whole of vertebrate evolution.

Figure 14
Figure 14 Geological ranges of
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

4.3 Corals

Corals are especially abundant in the Wenlock Limestone.

SAQ 12

4.4.1 Measures of adiposity

The amount of lipid stored within the body – an individual's adiposity – can be indirectly measured. Body shape (e.g. ‘apple’ or ‘pear’ shapes), waist-to-hip ratio, waist circumference and body mass index (BMI) are all used to classify obesity and being overweight, although BMI is the most common. Everyone should aim to have a body weight within the normal range for their height. Slightly different ranges apply between populations due to different body shapes. It is worth noting t
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

2.14 Samples and populations

It is no accident that the examples used to illustrate the statistics for repeated measurements of individual quantities were drawn from chemistry and physics. Experiments involving repeated measurements of some quantity are typical of the physical sciences. There are, however, many other types of scientific work in which a typical procedure is to collect data by measuring or counting the members of a sub-set of things which form part of a larger group, and
Author(s): The Open University

2.11 Using a calculator for statistical calculations

Table 3 shows all the values for each step in the process of calculating a standard deviation, so that you can see what the operations encapsulated by Equation 7 actually entail, but you will probably be relieved to hear that it is not usually necessary to carry out such detailed calculations. Scientific and graphics calculators (or computer sp
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

2.10.1 Mean and standard deviation for repeated measurements

In everyday terms, everybody is familiar with the word ‘average’, but in science and statistics there are actually several different kinds of average used for different purposes. In the kind of situation exemplified by Table 2, the sort to use is the mean (or more strictly the ‘arithmetic mean’) For a set of measurements, this is de
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

2.9 Repeated measurements

Scientists are always concerned with the reliability and precision of their data, and this is the prime reason for them to repeat measurements many times. Consider the photograph shown in Figure 6, which is the result of X-ray diffraction (see Box 5). To determine the atomic structure of the substance that produced this pattern, it would be necessary to measure the diameters of the fuzzy rings. At one time, this would probably have been done with an instrument called a travelling microscope;
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

2.1 Preamble

Statistical information is a familiar aspect of modern life, which features routinely in, for example, news reports, sports commentaries and advertising. Scientists who have collected large amounts of data by either counting or measuring quantities also rely on statistical techniques to help them make sense of these data. Suppose you had information collected from, say, three thousand patients, all with the same medical condition but undergoing a variety of treatments. First you would need te
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

Introduction

In this course we look at some different systems of numbers, and the rules for combining numbers in these systems. For each system we consider the question of which elements have additive and/or multiplicative inverses in the system. We look at solving certain equations in the system, such as linear, quadratic and other polynomial equations.

In Section 1 we start by revising the notation used for the rational numbers and the real numbers, and we list their arithmetical pr
Author(s): The Open University

License information
Related content

Copyright © 2016 The Open University

Introduction

For many centuries, ancient Egypt was seen as the source of wisdom and knowledge, about mathematics as well as other things. There was a long classical Greek tradition to this effect, and in later centuries the indecipherability of the hieroglyphs did nothing to dispel this belief. But since the early nineteenth century, when the deciphering of the Rosetta Stone by Young and Champollion enabled rapid progress to be made in translating extant Egyptian texts, the picture has changed to reveal a
Author(s): The Open University

License information
Related content

Copyright © 2016 The Open University

Introduction

This course is devoted solely to complex numbers.

In Section 1, we define complex numbers and show you how to manipulate them, stressing the similarities with the manipulation of real numbers.

Section 2 is devoted to the geometric representation of complex numbers. You will find that this is very useful in understanding the arithmetic properties introduced in Section 1.

In Section 3 we discuss methods of finding nth roots of complex numbers and the solutions of simple
Author(s): The Open University

License information
Related content

Copyright © 2016 The Open University

Introduction

When we try to use ordinary language to explore mathematics, the words involved may not have a precise meaning, or may have more than one meaning. Many words have meanings that evolve as people adapt their understanding of them to accord with new experiences and new ideas. At any given time, one person's interpretation of language may differ from another person's interpretation, and this can lead to misunderstandings and confusion.

In mathematics we try to avoid these difficulties by ex
Author(s): The Open University

License information
Related content

Copyright © 2016 The Open University

Modelling heat transfer

The main teaching text of this unit is provided in the workbook below. The answers to the exercises that you'll find throughout the workbook are given in the answer book. You can access it by clicking on the link under the workbook.

Click 'View document' to open the workbook (PDF, 0.4 MB).

4.1 Upper bounds and lower bounds

Any finite set of real numbers has a greatest element (and a least element), but this property does not necessarily hold for infinite sets. For example, neither of the sets  = {1, 2, 3, … } and [0, 2) has a greatest element.

However, the set [0, 2) is bounded above by 2, since all points of [0, 2)
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

1.4 Real numbers and their properties

Together, the rational numbers (recurring decimals) and irrational numbers (non-recurring decimals) form the set of real numbers, denoted by .

As with rational numbers, we can determine which of two real numbers is greater by comparing their decimals and noticing the first pair of corresponding digits
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

1.2 Decimal representation of rational numbers

The decimal system enables us to represent all the natural numbers using only the ten integers which are called digits. We now remind you of the basic facts about the representation of rational numbers by decimals.


Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

Pages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477