Pages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 9007 result(s) returned

Learning outcomes

By the end of this unit you should be able to:

  • explain the principles that underlie the ability of geothermal energy to deliver useable energy;

  • outline the technologies that are used to harness the power of geothermal energy;

  • discuss the positive and negative aspects of geothermal energy in relation to natural and human aspects of the environment.


Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

Introduction

Energy from sources other than fossil and nuclear fuels is to a large extent free of the concerns about environmental effects and renewability that characterise those two sources. Each alternative source supplies energy continually, whether or not we use it. And many alternative sources of energy have been used in simple ways for millennia, e.g. wind and water mills, sails, wood burning — but only in the last two centuries has their potential begun to be exploited on an industrial scale. Ex
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

4.5 Geological criteria for safe radioactive waste disposal

Even in the best of circumstances, containers such as the one shown in Figure 19 will survive for only 100–1000 years, although the glass itself may inhibit the migration of radioactive isotopes for a further 1000 years. So, in view of the long decay times (Author(s): The Open University

3.1 Introduction

Just how readily available are uranium resources, and do their distribution and cost impose restrictions on nuclear power generation? Compared to a coal-fired power station a nuclear power station requires far less fuel in terms of mass. You have seen that a 1 GW burner reactor requires 5000 t of natural uranium over 30 years, whereas a comparable modern coal-fired power station needs 10 000 t of coal every day. However, uranium does not occur naturally in metallic form, nor in the concentrat
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

2.3.2 Geophysical methods — seismic surveying

Geophysical survey methods use measurements made at or near the Earth's surface to investigate the subsurface geology. The most widely used geophysical method is seismic reflection surveying; a rapid and highly cost-effective way of gathering data.

A seismic source (produced either by the explosive release of compressed air in a shallow borehole, or a heavy pad vibrated hydraulically at the surface) generates seismic waves that travel through the ground (
Author(s): The Open University

1.3.1 Peat formation in deltas and coastal barrier systems

Since mires require poor drainage, low-lying land close to coastal areas might provide the right conditions for peat to form. Most extensive areas of modern peat formation are indeed situated not far above sea-level, and as Figure 2 shows, they are commonly associated with river deltas and coastal barriers. Such enviro
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

1.2 The origins of coal

If you examine a piece of coal, at first sight it appears black and rather homogenous. However, closer inspection generally shows a series of parallel bands up to a few millimetres thick. Most obvious are shiny bands that break into angular pieces if struck. Between them are layers of dull, relatively hard coal and thin weak layers of charcoal-like carbon. Coal splits easily along these weak layers, which crumble to give coal its characteristic dusty black coating.

Microscopic examinati
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

1.1 Introduction

There are many environmental reasons why coal is a rather undesirable source of energy. Burning it introduces large amounts of gases into the atmosphere that harm the environment in a variety of ways, as well as other, solid waste products. Coal extraction leads to spoil heaps and mines that scar the landscape, land subsidence that affects roads and buildings, and in some cases water pollution.

With apparently so little going for it, why do we rely so much on coal to meet our energy nee
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

Acknowledgements

The content acknowledged below is Proprietary (see terms and conditions). this content is made available under a Creative Commons Attribution-NonCommercial-ShareAlike 2.0 Licence.

Grateful thanks is made to the pupils and staff of: The Henley College, Oxon; Langtree School, Woodcote, Oxon and The Hill Primary School, E
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

3 DNA: Spot the difference

Here we look at DNA, the molecule which contains the instructions for making each living creature. It is contained within the genes of every individual living thing on Earth. Closely related creatures have DNA that is very similar, and distantly related creatures have DNA that is very different. By looking at how similar or different their DNA molecules are, we can see how closely related two species are.

Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

2 Odd one out

The image below shows models of four mammals:

  • Rhinoceros

  • Whale

  • Elephant

  • Hippopotamus

Figure 1
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

1 Natural groups

Darwin made extensive observations on a great many creatures, including mammals, and noticed that species fell into natural groups, e.g. lions, tigers and leopards have many similarities, and resemble cats. On the basis of his observations, he was able to place mammals in distinct groups.

His work has continued, and we now recognise that mammals have evolved from a common ancestor, and have branched into many different groups, or ‘Orders’. The animation below shows the different O
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

7.3 Regulation of secretion

Up to this point we have made a clear distinction between constitutive secretion and regulated secretion. In reality however the border is a bit more blurred. For example, many molecules are constitutively expressed on the surface of a cell, but their expression is increased in response to a particular stimulus. In other words, surface expression is determined by both constitutive and regulated secretion. Constitutive secretion is regulated primarily at the level of protein synthesis, whereas
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

7.2 Triggering systems

In neurons, the stimulus for vesicle release is usually a depolarisation (action potential) that causes calcium to enter the nerve cell through voltage-gated calcium channels. The rise in intracellular Ca2+ concentration,[Ca+], causes the vesicle to fuse with the plasma membrane and a large amount of neurotransmitter is then released. Although the SNARE complex constitutes the essential fusion machinery of the synaptic vesicles, it is unclear exactly how fusion is trigge
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

6.3 Uncoupling and receptor recycling

Receptors that have been directed to the early endosome generally behave in one of two ways. They may return to the plasma membrane by vesicular transport or they may be transported to the lysosomes, where they are degraded. Rapid recycling of receptors in general occurs for receptors that bring ligand into the cell, whereas receptors involved in signal transduction are usually degraded. Note that these are generalisations and specific receptors may take different routes through the cell.


Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

6.2 Endocytosis

Fluid-phase uptake by pinocytosis can be broadly categorised according to the size of the endocytic vesicle and this also relates to how the vesicle is coated (Figure 35). The rate of internalisation is directly proportional to (i) the concentration of extracellular molecules, (ii) the volume enclosed by the vesicle and (iii) the ra
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

6.1 Introduction

In the final two sections of this unit, we shall look at some examples of endocytosis and exocytosis, in different types of cell. The molecules that are taken up or released by a cell and the triggers for secretion depend greatly on the type of cell, although the underlying transport processes are similar for many cell types, and relate to the systems described above.

The plasma membrane not only separates the cell interior from the extracellular environment, it also regulates and coord
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

5.1 The role of the cytoskeleton in intracellular transport

In Section 3 we explained how vesicles bud from donor membranes and fuse with target membranes, which may be quite distant. In such cases, vesicles are actively transported from one site to another, a process that involves motor proteins attached to the vesicle, which propel the vesicle along the cytoskeleton. The microtubule network in particular acts as a trackway for long-range movement of transport vesicles, and this is evident in the movies that show the dual staining of tubulin and secr
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

4.5 Summary

  1. Targeting sequences at the N-terminus of proteins direct translation across the ER, and act as signals for import to the nucleus, mitochondrion and chloroplasts. Sequences at the C-terminus control traffic through the ER and the Golgi and to peroxisomes.

  2. Glycosylation is directed by signal sequences that act as targets for N-linked glycosylation in the ER and O-linked glycosylation in the Golgi apparatus. Glycosylation and remodelling of polys
    Author(s): The Open University

    License information
    Related content

    Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

4.4 Lipidation

Lipid modification occurs in both prokaryotes and eukaryotes, including viruses. Lipidated proteins have an increased affinity for membranes, and the preferential partition of lipid-anchored proteins provides a number of physiological benefits, such as spatial specificity, increased local concentration and faster protein–protein interactions. A number of C-terminal motifs are sites for lipidation, including-CaaX, -CC and –CXC, where X is any amino acid and a is an aliphatic residue.


Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

Pages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451