Pages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 8918 result(s) returned

3.6 Moon38: Apollo 12 station 5

Two of the frames show Al Bean carrying the Apollo Lunar Surface Experiments Package (ALSEP) packages out from the Lunar Module. (QuickTime, 500KB, note: this may take some time to download depending on your connection speed)

3.2 Moon34: Apollo 11 station 3

This panorama was collected by Neil Armstrong from a spot north east of the landing module at the Sea of Tranquility. (QuickTime, 500KB, note: this may take some time to download depending on your connection speed)

2.6 The surface

David A. Rothery Teach Yourself Planets, Chapter 6, pp. 66–75, Hodder Education, 2000, 2003.

Copyright © David Rothery

Look at the Moon even with the unaided eye, and you will see that it has dark patches on a paler background (Figure 2). This simple observation picks out the two distinct types of crust on the Moon. The paler areas are the lunar highlands, and the darker areas are the lunar ‘seas’ or maria (singular: mare). Both the highla
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

Learning outcomes

After studying this unit you will be able to:

  • retrieve, evaluate and interpret data and information about the Moon, so that (for example) using a close-up picture of the Moon's surface you could identify the types of feature visible and recognise the processes responsible for creating them;

  • interpret simple tables;

  • express, manipulate and compare very small numbers.


Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

6.4.1 Writing a chemical equation to describe a chemical process

Natural gas, which is largely methane, is burned to provide heat for cooking and domestic heating and as an industrial power source. This process of burning involves the reaction of methane with oxygen in air to produce carbon dioxide and water.

A chemical equation can be constructed for the reaction of methane with oxygen to give carbon dioxide and water as the products.

  1. The first step is to write the formulas of the reactants on the left and t
    Author(s): The Open University

    License information
    Related content

    Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

5 Molecules and covalent bonding

Covalent bonding is one kind of linking that joins atoms together. The group of atoms held together by covalent bonds is a molecule. The example you are most familiar with is the compound water: water consists of covalent molecules, i.e. it is a covalent compound. Recall what is in molecules of water from Section 2.5.


Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

4 Inside the atom

Before going on to see how atoms can link (bond) with each other, you need to look at atoms in a little more detail. Doubtless they are not like blocks of Lego! So what are they like?

In fact, every atom has a complex internal structure. Given the extremely small size of an atom, you may find it difficult to visualise any smaller bits inside it. However, you may already be familiar with some of the effects of one of these components – electrons. It is easy to do an experiment t
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

3 What are compounds?

Activity 1: Elements and compounds

0 hours 10 minutes

Click on the video clip to watch Elements and Compounds, which focuses on water and its constituent elements.

Click below to v
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

2.7 The ‘salt’ in seawater

The difficulty with having so much of the Earth's water locked up in the oceans is summed up poetically by Coleridge's ‘Ancient Mariner’, becalmed on board ship in the doldrums, beneath a blazing Sun.

Water, water, everywhere,

And all the boards did shrink;

Water, water, everywhere,

Nor any drop to drink.

(Samuel Taylor Coleridge, The Rime of the Ancient Mariner, 179
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

3.5 Electrophysiological studies of language processing

Brain imaging and aphasic studies helped us localise the subparts of language processing within the brain. However, they have shed little light on how processing unfolds in real time. This is because contemporary brain imaging is quite poor at showing changes in activity through time in fine detail, so it is hard to pick up something that may be happening slightly before something else.

In Author(s): The Open University

2.5 From phoneme to sentence structure: the syntactic problem

In the vervet monkey system, calls stand by themselves. Thus there is no syntax. Syntax can be thought of as working like road traffic rules do. It doesn't much matter which side of the road you drive on, as long as there is some clear convention. Similarly in (13), it is necessary to understand the difference between (13a) and (13b) without ambiguity, by having some rule or other about which noun phrase comes first. England may differ from most of the rest of the world in terms of the side o
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

2.1 Preliminaries

To talk about how human language works, we need to establish the meaning of some key terms. The study of language and languages is called linguistics, and linguistics relates closely to biological psychology, as we shall see. Linguists talk about the grammar of a language. By this they don't mean a set of rules about how people should speak. They mean the set of subconscious rules we actually use in formulating phrases and sentences of speech. In this sense, there is no such thing as b
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

1 Introduction

The document attached below includes the table of contents and first section of Mountain building in Scotland. In this section, you will find the following subsections:

  • Table of contents

  • 1.1 Setting the scene

  • 1.2 Recognizing ancient mountains

  • 1.3 Orogeny through geological time

    • 1.3.1 Geological time: a brief note

    • 1.3.2 Disentangling the cont
      Author(s): The Open University

      License information
      Related content

      Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

11.3 Frequency selectivity

In preceding sections we examined two ways in which the auditory system may code frequency information: the place theory and phase locking. In this section we will look at the psychophysical evidence for place coding on the basilar membrane by examining the ability of the auditory system to resolve the components of sinusoidal waves in a complex sound – a phenomenon known as frequency selectivity.

The perception of a sound depends not only on its own frequency and intensity but also o
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

11.2 Frequency discrimination

Some findings indicate that, for moderate loudness levels, humans can detect a frequency change of about 1 to 3 Hz for frequencies up to about 1000 Hz. Figure 37 shows a plot of the smallest frequency difference for which two tones can be discriminated for a number of reference tones. You can see from the figure that up to about 1000 Hz, the D
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

7.1 The ascending auditory pathway

Up till now we have dealt with the anatomy of the auditory periphery and how the basic attributes of sound are coded within the auditory periphery. A great deal of additional processing takes place in the neural centres that lie in the auditory brainstem and cerebral cortex. Because localisation and other binaural perceptions depend on the interaction of information arriving at the two ears, we need to study the central auditory centres, since auditory nerves from the two cochleae interact on
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

6.1 Firing-rate hypothesis

Information about stimulus intensity is encoded in two ways: the firing rates of neurons and the number of active neurons.

Intensity is assumed to be encoded by an increase in discharge rate of action potentials within the auditory system. As the stimulus gets more intense, the basilar membrane vibrates at a greater amplitude causing the membrane potential of activated hair cells to be more depolarised and this causes the nerve fibres that synapse onto the hair cells to fire at a greate
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

4 Neural processing of auditory information

In this section we will look at how the frequency selectivity found along the basilar membrane is preserved or modified by the auditory nerve and how information about the intensity of the signal is encoded in the response of the auditory nerve fibres.

The nerve that communicates with or innervates the hair cells along the basilar membrane is called the vestibulocochlear nerve or VIIIth cranial nerve. It enters the brainstem just under the cerebellum and conveys information from
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

3.8 Revision questions

Question 1

Discuss the two ways in which the middle ear increases the effectiveness with which sound is transmitted from the external ear to the inner ear.

Answer
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

3.7.1 Summary of Sections 3.4 to 3.7

Hair cells are found in the organ of Corti and run the length of the basilar membrane. They transform mechanical energy into neural signals.

When the basilar membrane vibrates in response to sound, hair cells located at the site of maximal vibration on the basilar membrane are stimulated. This means that the mechanical properties of the membrane allow the auditory system to distinguish one frequency from another by the location on the membrane that is maximally excited by a particular f
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

Pages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446