Pages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 9122 result(s) returned

6.3.1 Refinements and difficulties

In Section 6.2, we said that inter-axis repulsions vary in the order:

non-bonded pair–non-bonded pair > non-bonded pair–bond pair > bond pair–bond pair

There is evidence for this in the inter-bond angles in molecules. For example, in wat
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

4.5 More about covalent bonding

So far, the valencies in Table 1 have just been numbers that we use to predict the formulae of compounds. But in the case of covalent substances they can tell us more. In particular, they can tell us how the atoms are linked together in the molecule. This information is obtained from a two-dimensional drawing of the structural form
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

2.5.1 Try some yourself

1 What are the following?

  • (a) 10

  • (b) 01

  • (c) 20

  • (d) 02


Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

3.1.1 Try some yourself

1 Write down the coordinates of A and B.


Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

Introduction

This unit is an adapted extract from the course Mathematical methods and models (MST209)

This unit lays the foundations of Newtonian mechanics and in particular the procedure for solving dynamics problems. The prerequisite skills needed for this unit are the ability to solve first- and second-order differential equations, a knowledge of vectors, and an understanding of the concept of a
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

Acknowledgements

The content acknowledged below is Proprietary (see terms and conditions) and is used under licence.

All materials included in this unit are derived from content originated at the Open University.


Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

1.1 Experiences of learning mathematics

You will come to this unit with many memories of mathematics, both as a teacher and a learner. It may help if you start by recalling memories of learning mathematics and making a record of them in your notebook.

When you work on a task, get into the habit of having your notebook to hand to record your thinking. Use the notebook in any way that helps you to think about the work you have done. Some people find it helpful to divide a page into two columns using the left-hand side to record
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

1.8 End of section questions

Question 5

1.4 An overview of the global energy budget

Figure 12 incorporates the additional factors considered in Section 1.3, including the non-radiative energy transfers across the surface-air boundary (green arrow). Essentially a more detailed version of Figure 7, this figure gives quantified estimates of the globally averaged energy budget for the whole Earth-atmosphere system, and its component parts. Question 3 should help you to find your way around Figure 12, and to draw together many of the key points developed so far in this chapter. M
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

1.3.4 The role of convection in the atmosphere

We come now to our final refinement to the simple picture in Figure 7. Recall that the troposphere is heated from below, with temperature then falling with increasing altitude. This situation sets the scene for the onset of convection – the bulk flow or circulation of a fluid driven by differences in temperature. Convection in the atmosphere plays a vital role in two further mechanisms – quite apart from the emission of longwave radiation – whereby energy is transferred from the
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

1.3.1 The vertical ‘structure’ of the atmosphere

The atmosphere is not a simple, uniform slab of absorbing material. On the contrary, it gets progressively ‘thinner’ or less dense with increasing altitude (height above mean sea level); i.e. the total number of molecules in a given volume of air is lower, and so is the pressure. About 80% of the total mass of the atmosphere is within some 10 km of the surface; 99.9% lies below 50 km.

The important corollary is that the key greenhouse gas molecules (H2O and CO
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

1.2.2 Bringing in the atmosphere: the natural greenhouse effect

As a dam built across a river causes a local deepening of the stream, so our atmosphere, thrown as a barrier across the terrestrial rays, produces a local heightening of the temperature at the Earth's surface.

(Tyndall, 1862, quoted in Weart, 2004)

Thus, writing in 1862, John Tyndall (Figure 6) described the key to our modern understanding of why the Earth's surface is so much warmer than t
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

1.3.5 Corporate connections

As I mentioned in Section 2, what was happening in the factories of overseas contractors was said to have appeared remote to most, if not all, the chief executive officers of the clothing multinationals in the 1980s. Overseas contractors were selected on the basis of market price, quality and reliability, not on whether forced or child labour happened to be employed to stitch the product together. However, all that changed in the early 1990s when the geographical ties between the big retailer
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

1.2.10 Summary

  • The shift of the world's manufacturing base from developed to developing economies in the 1970s heralded the beginning of a new global division of labour and the rise of global factories to produce for Western markets. The search for ever-cheaper labour sources undertaken by multinational firms established a new geography of low-cost manufacturing operations which, to this day, remains controversial.

  • The rise of subcontracting as the most flex
    Author(s): The Open University

    License information
    Related content

    Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

2.2.1 Environmental economics

Environmental economics emerged as a sub-discipline in the 1960s, following a tradition that began in the early twentieth century with ‘agricultural’ economics and continued in the 1950s with ‘resource’ economics. In each case, natural resources are treated as environmental assets in the same way as other resource inputs, using the classical mainstream supply and demand economic models. David Pearce, who at one stage was at the forefront of environmental economics and was an ac
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

Acknowledgements

Except for third party materials and otherwise stated (see terms and conditions), this content is made available under a Creative Commons Attribution-NonCommercial-ShareAlike 2.0 Licence

Grateful acknowledgement is made to the following:

Text

Reading: Stephen Talbott
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

5.3 Settlement, deforestation and endangered species

Box 4: Some indicators of New Zealand's environment*

The proportion of New Zealand converted to farmland is large by world standards (52 percent compared to the world's 37 percent in 1993). Although our human population density is comparatively low (13 people for each square kilometre (km2
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

2.3 Negative feedback and stability

If positive feedback results in change, then another mechanism must exist that creates stability. This is negative feedback.

What stops water hyacinth from taking over the world? Clearly, it is the lack of tropical freshwater. As the number of water hyacinth reaches the limits of their water body, there is a sudden increase in the death rate as offspring compete for the ever decreasing levels of sunlight. The sudden overcrowding allows the establishment of a negative feed
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

2.2 Quality of life

Unlike non-living systems, all living systems have behaviours that have evolved to achieve a certain
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

2.1 Introduction to the problems with the way we think

The way in which we think, and the way in which we think about thinking in our Western tradition, can be traced back at least to Parmenides of Elea, a Presocratic Greek philosopher who lived around 500 BC. His influence on our thinking is hard to overestimate – from it grew the notion that what can be known must be real, and what is real is eternal and unchanging. Though many others have contributed since, the Greek philosophers laid the foundation for the way in which we currently think ab
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

Pages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457