Pages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 9001 result(s) returned

7.3 Depositing metals and alloys

Metal layers are used extensively in device fabrication: to carry current for both power and signals, to apply the voltages that control transistors and generate forces for MEMS, as mirrors and optical coatings, and in magnetic devices for recording media. Different applications might require a continuous film, a long track, multiple thin layers or a plug filling a ‘via hole’ through to a buried layer. The electrical properties resulting from micro structure and composition must be contro
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

Acknowledgements

Except for third party materials and otherwise stated (see terms and conditions), this content is made available under a Creative Commons Attribution-NonCommercial-ShareAlike 2.0 Licence

Grateful acknowledgement is made to the following sources:

Figures

Figure 7 Adapted
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

3.1.2 Shutter

The electronic shutter that freezes the frame for read-out adds more complexity, but can be based on the standard MOS fabrication steps. In effect, at the end of image capture, the charge at each pixel is first switched into another ‘blind’ MOS capacitor that sits in the read-out line for each row, as the middle of the three buckets per pixel. You should have already guessed that the switch is yet another MOS device. Once switched into the read-out line, the row data are isolated from the
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

5.2 Material comparisons

I want to depart from the specific example of the bicycle to make some more general points.

In most simple structural analysis the self-weight of the structure is ignored, as it is considered to be small in comparison with the loads carried. However, as an illustration of engineering practice in the search for efficient structures to employ in product design, it is worth examining how the strength and weight of particular materials compare.

These comparisons are illustrated throug
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

4.8 Assess and review again

If you've been following the stages of our problem-solving map, then the chances are you're ahead of me here (Figure 19). Yes, if it works, hurrah; if it doesn't then off we go again, all the way back to ‘possible solutions’ and selecting the best of the rest. Or maybe even going back to the be
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

4.5 Model the best solution

In moving from the ‘possible solutions’ to the ‘best solution’ box, Figure 12, we have to assume that a certain amount of evaluation has been done in the previous loop. The solution is still on paper, and probably not much more than a sketch, but something is badly wrong if the best solutio
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

References

Further reading and resources
Collapse at Kinzua: Evidence for Tay on open2.net.
Forensic engineering: the Tay Bridge disaster on open2.net.
Lewis, PR and Reynolds, K (2002) ‘Forensic engineering: a reappraisal of the Tay Bridge disaster’, Interdisciplinary Science Reviews, vol. 27, no. 4, pp. 287–98.
<
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

2.8 Good times and bad

The music industry, like any other large industrial business, had good times and bad times. By 1924 the burgeoning of radio broadcasting in the United States caused a severe downturn in record and equipment sales, leading to amalgamations and bankruptcies of many of the record companies. Actually, radio broadcast studio technology proved of great importance to the record industry. The sensitive microphones and electronic amplifiers used in broadcast studios offered improved characteristics th
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

5.3 Summary

The term phase is used to refer to the part of a cycle that an oscillating system is in at a particular moment. For two sine waves of the same frequency that are not in step, one wave lags or leads the other in time. We can express the amount by which they are out of step as a phase difference. Usually phase difference is expressed as a fraction of a cycle or as a certain number of degrees (one complete cycle corresponding to 360°).

If two (or more) sine waves are completely out of pha
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

3.2 Summary

The number of cycles of oscillation per second, both for a vibrating source and a pressure wave, is known as the frequency, symbol f Frequency is specified in hertz (Hz) or kilohertz (kHz). One hertz is one cycle per second; one kilohertz is one thousand cycles per second. Frequency and period are directly related. Frequency is the reciprocal of period:

Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

2.5 Wavelength

So far we have seen that sound is a pressure wave, and that the spacing of the pressure variations is related to the period of vibration of the source.

A graphical representation of the pressure wave from a tuning fork closely approximates to a certain type of wave known as a sine wave.

If we freeze the pressure wave as a snap shot in time, the variations in pressure with distance from the tuning fork can be plotted as a sine wave. The vertical axis is pressure so the crest
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

Module team

Course team

Rosalind Armson, author Joyce Fortune, case study author Ray Ison, author

Martin Reynolds, course chair Laurence Newman, course manager

Mike Aiken, critical reader

Mandy Anton, graphic designer

Simon Bell, critical reader

Victor Bignell, critical reader

Chris Blackmore, critical reader

Jake Chapman, critical reader

Tony Duggan, project controller (Technology)

Pip Harris, co
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

9.1 Making sense of complexity

This section is about finding ways of thinking about complex situations – making sense of complexity. This is a process of discovery. It involves thinking about complexity in an orderly way that allows you to enter a deeper understanding of the complexity. It goes beyond immersion in, and representation of, complexity.

The invitation I am making in this section is to move into the possibility of structuring complexity. Notice I am not suggesting there is structure in the
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

7.2.5 Trap 5: the final version trap

Ironically, the biggest mistake you can make, having got this far, is to assume your picture is finished. New realisations will crop up. Add these to your picture as you appreciate more and more of the complexity.

So, the check for avoiding this trap is to ask:

  • Have I had any new insights about the complex situation since I last added something to this picture?

Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

18.2.6 Encouraging diffusion

In general, innovations that are perceived as having relative advantages, being more compatible, less complex, observable, and trialable will diffuse more rapidly than other innovations.


Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

12.4 Coupling model

There are examples where either technology or the market appears to be more significant in stimulating invention but the majority of innovations involve a creative coupling of technological and market factors. In some respects successful innovation is a case of the survival of the fittest. Failure can come both from not getting the technology right and from misjudging the market. Success is more likely if the focus is not too one-dimensional but rather a balance between technology and market
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

11.4 Step 3 – incubation

Incubation is a period when the inventor, having been working on the problem for some time during identification and exploration, is no longer giving it conscious attention. The problem and its solution have been put to one side, on purpose or not, but the subconscious mind is capable of holding on to the problem. During this time, according to Roy (Open University, 2004, p. 34), ‘the relaxed brain [is] repatterning information absorbed during the period of preparation often after receiving
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

10.9.3 New manufacturing process

One of the reasons that a new device, like an RFID tag, has a chance of becoming mainstream technology is that a new manufacturing process has been invented that allows production on an industrial scale and at a relatively low cost.

Fluidic self-assembly (FSA) is a new manufacturing process that has been patented by Alien Technology Corp in the USA. In the FSA process tiny integrated circuits – trademarked as NanoBlocks – are suspended in liquid and flow over a substrate surface tha
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

10.3 Constructive discontent

Inventive ideas often arise because existing technology or design proves to be unsatisfactory in some way – perhaps too costly, too inefficient or too dangerous. Using a product or process for a while can reveal inadequacies in its performance and is often vital preparation for producing ideas for improvements. You may have become dissatisfied either with an existing product or process or with the fact that something doesn't exist to meet a need you've identified. But creative individuals g
Author(s): The Open University

License information
Related content

Except for third party materials and/or otherwise stated (see terms and conditions) the content in OpenLearn is released for use under the terms of the Creative Commons Attribution-NonCommercial-Share

Pages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451