Natural Sciences

Archaeology, Biology and Earth Science

Natural Sciences is a multidisciplinary degree which allows you to study three subjects in the first year and continue with two subjects in the second and third year. 

Year One

You will study 40 credits of each subject from your chosen three-subject streams.

Archaeology

Understanding the Past I

Archaeologists are interested in all aspects of the human past, from ancient landscapes and changing environments, buried settlements and standing monuments and structures, to material objects and evidence for diet, trade, ritual and social life. This module provides a basic introduction to the discipline of archaeology, the process by which the material remains of the past are discovered, analysed and used to provide evidence for human societies from prehistory to the present day.

The autumn semester introduces the historical development of the subject, followed by a presentation of current theory and practice in the areas of archaeological prospection and survey, excavation and post-excavation analysis, relative and absolute dating, the study of archaeological artefacts, and frameworks of social interpretation.

In the spring semester, you will be taken into the field to gain practical experience of core archaeological methods in field survey and buildings archaeology. By the end of the module, we hope that you will have developed a good understanding of the concepts used in archaeology, the questions asked and methods applied in investigating the evidence.

20 credits in the Autumn Semester.

 
Understanding the Past II

This module builds on the autumn semester module, Understanding the Past I, as an introduction to the core aims and methodologies of Archaeology as a discipline in providing a basic introduction to the process by which the material remains of the past are discovered, analysed and used to provide evidence for human societies from prehistory to the present day. Through lectures, classroom activities and practical fieldwork, students will be introduced to the study of landscape and the built environment, looking at how the archaeological record is both created and investigated. Students will be taken into the field to gain practical experience of core archaeological methods in field survey and buildings archaeology. By the end of the module, we aim to ensure that students will have developed a good understanding of the concepts used in archaeology, the questions asked and methods applied in investigating the evidence.

20 credits in the Spring Semester.

 

 


Biology

40 compulsory credits can be from your chosen substream.

Molecular Biology and Genetics specialism

Genes, Molecules and Cells

This module combines lectures and laboratory classes and introduces you to the structure and function of significant molecules in cells, and the important metabolic processes which occur inside them. You will study, amongst other topics, protein and enzyme structure and function, the biosynthesis of cell components, and the role of cell membranes in barrier and transport processes. You'll examine how information in DNA is used to determine the structure of gene products. Topics include DNA structure, transcription and translation and mutation and recombinant DNA technology.

40 credits throughout the full year.

 

Evolutionary Biology and Ecology specialism

Evolution, Ecology and Behaviour

Starting with Darwin’s theory of evolution, you will learn how natural selection and other evolutionary forces have shaped the ways in which organisms interact with each other and their environment. In addition to lectures, practical classes will give you hands-on experience with a range of ecological and behavioural concepts in the laboratory and the field.

20 compulsory credits throughout the full year.

 
Life on Earth

Life on Earth provides an introduction to the fundamental characteristics and properties of the myriad of organisms which inhabit our planet, from viruses, bacteria and Archaea, to plants and animals. In weekly lectures, and regular laboratory practical classes, you will consider how living organisms are classified, how they are related genetically and phylogenetically, and basic aspects of their structure and function.

20 compulsory credits throught the full year.

 

 

Earth Science

Students must take a total of 40 credits. 20 credits are from a compulsory module.

Environmental Geoscience

Bulk properties of the Earth, minerals, igneous rocks, sedimentary rocks, metamorphic rocks, geological time, tectonics, geological structures, map interpretation, geological hazards, resource geology.

20 credits in the Spring semester.

 

 

Select a further 20 credits from the following optional modules:

Global Environmental Processes

The unifying theme of this module is biogeochemical cycling - the production, distribution and cycling of materials on the Earth and their availability to, and use by, biological organisms. The module starts by covering the history of the universe, from the big bang to the evolution of the Earth's surface environment. Then you will explore the major global systems and their circulations as they are today - solids, liquids and gases. In the final section you will examine the major materials - including carbon, nitrogen, sulphur, oxygen and metals - and their budgets and cycles; and the interactions between biological and physical/chemical processes on a global scale. You will have a two-hour lecture once a week for this module. 

20 credits in the Autumn Semester.

 
Physical Landscapes of Britain

This module provides an understanding of the history and origins of the Earth and its life and landforms through consideration of the following topics:

  • Development of life over geological time
  • Environmental changes over geological time
  • Field trip to the Peak District (full costs will be supplied nearer the time of the trip)

10 credits in the Autumn Semester.

 
Introduction to Geographic Information systems
The module provides you with the theoretical background and practical training to undertake basic spatial analysis within a contemporary Geographic Information System (GIS). 

It is built upon a structured set of paired theory lectures and practical sessions, supported by detailed theory topics delivered via Moodle, which contain linkages to associated textbook resources. It aims to ensure competency in the use of a contemporary GIS software package whilst developing transferable ICT skills.

It also encourages you to develop the analytical skills necessary for the creation of workflows that utilise the built-in analytical functionality of a GIS to solve a spatial problem.

10 credits in the Spring Semester.

 
On Earth and Life
On Earth and Life explores the deep historical co-evolution of Earth and Life and emphasises uniqueness of place and historical contingency. The module leads on from and complements Physical Landscapes of Britain in exploring geological, plate tectonic and palaeoenvironmental ideas and research, but at the global scale.

It emphasises the role of life in creating past and present planetary environments, and conversely the role of environment and environmental change in the evolution and geography of life. The module also serves to prepare the ground for and contextualise several second and third year geography modules, especially Environmental Change and Patterns of Life.

10 credits in the Spring Semester.

 

Compulsory module

All students are required to take a compulsary module, Academic and Transferable Skills Portfolio. This will be taught throughout the first full year. It will support organisational and professional competancies which will be used during the course.

Year Two

You will continue on your stream comprising of two of your first year subjects. You will take 60 credits of modules from each subject and greater emphasis will be put on studying outside of formal classes.

Archaeology

Students studying archaeology beyond the first year need to do 10 days of archaeological fieldwork training to gain professional experience. This is usually done over the summer after the first academic year of study. This will normally be met by projects run by the Department of Classics and Archaeology.

20 compulsory credits:

Archaeology: Theory and Practise

The excitement of discovery and research is the foundation of everything we do as archaeologists. This module is aimed at helping you to develop more advanced research skills and to discover how we interpret archaeological evidence from multiple different perspectives. Here we explore how changes in the wider social and theoretical landscape have affected archaeological understanding through time. You will be introduced to the concepts and methods that you will put into practice in your third year dissertation or independent project, and learn how to develop a research proposal. The teaching is delivered in a mix of lectures, class workshops and research skills sessions.

20 credits in the Autumn Semester.

 

 

Optional Archaeology modules

A further 40 credits from the following options:

The Art and Archaeology of Sparta

Description under review.

20 credits in the Autumn Semester.

 
Themes in Near Eastern Prehistory
You will critically examine themes in Near Eastern Prehistory. The themes take you from the development of agriculture, pastoralism and sedentism to the appearance of the first cities, states and writing. Drawing directly from current research, you will use case studies to examine these themes. You will use archaeological evidence to understand how these developments are reflected in social, religious, economic and political organisations of the prehistoric Near East. You will attend weekly lectures and seminars. After appropriate guidance, you will take part in learning activities includes:
  • setting readings
  • presenting
  • running classroom discussions.

You will receive feedback on these participatory activities. You will write an essay for your formal assessment.

20 credits in the Autumn Semester.

 
The Silk Road

The Silk Road will be presented as a range of archaeological, historical, geographical, political and scientific themes. Broad cultural themes will be balanced with the presentation of specific case studies, such as the Roman, Byzantine and (medieval) Islamic Silk Roads and their links with e.g. the Tang and Ming dynasties along the networks which made up the terrestrial and maritime silk and spice roads. Later examples will also be considered to provide a balance. The ways in which Silk Roads can be defined such as a consideration of trade and exchange of a wide range materials across central and eastern Asia will be considered. Furthermore scientific analysis and its role in the interpretation of trade and exchange will be considered between for example China, central Asia , Scandinavia and the Middle east. Nineteenth century and more recent perceptions of the Silk Road will be considered too. This cross-disciplinary approach will focus on a range of geographical areas during a range of time periods. Movement of peoples and things will therefore be considered from a wide range of viewpoints producing mutually enriching studies set in global contexts.

20 credits in the Autumn Semester.

 
Late Roman Britain

Description under review.

20 credits in the Spring Semester.

 
Archaeological Detective: Interpreting the Dead

Description is currently under review.

20 credits in the Autumn Semester.

 

 

Biology

40 compulsory credits from your chosen specialism:

Molecular Biology and Genetics specialism

  • The Genome and Human Disease

In this module you will learn about the structure and function of the eukaryotic genome, including that of humans, and the approaches that have led to their understanding. You will learn about techniques that are employed to manipulate genes and genomes and how they can be applied to the field of medical genetics. By using specific disease examples, you will learn about the different type of DNA mutation that can lead to disease and how they have been identified. Practical elements will teach you about basic techniques used in medical genetics such as sub-cloning of DNA fragments into expression vectors. Practical classes and problem based learning will be used to explore the methods used for genetic engineering and genome manipulation.

20 compulsory credits throughout the year.

 
Microbial Biotechnology

You'll cover the key groups of eukaryotic and prokaryotic microorganisms relevant to microbial biotechnology, principles of GM, and strain improvement in prokaryotes and eukaryotes. The impact of “omics”, systems biology, synthetic biology and effects of stress on industrial microorganisms are explored, alongside the activities of key microorganisms that we exploit for biotechnology.

10 compulsory credits in the Spring Semester.

 
  • Bacterial Genes and Development

Molecular events that occur during the control of gene expression in bacteria will be explored. You'll learn by considering case studies, which will show you how complex programmes of gene action can occur in response to environmental stimuli. You will also study the regulation of genes in pathogenic bacteria.

10 compulsory credits in the Spring Semester.

 


Plus a further 20 credits from the following for the Molecular Biology and Genetics specialism:

Infection and Immunity

You will study microbiology, learning about pathogenic microbes including viruses, fungi, parasites and the roles of bacteria in health and disease. You will learn how the body generates immunity; the causes of diseases associated with faulty immune responses will be considered. In applied microbiology you will be introduced to recombinant DNA technology and prokaryotic gene regulation.

20 credits in the Autumn Semeseter.

 
Neurobiology of Disease

This module will teach you the underlying neurophysiology and pathology associated with several common CNS disorders and the neuropharmacology of currently available medication. You will learn about the neurotransmitters and pathways involved in normal brain function and how changes in these contribute to abnormal function. You will also decipher the pharmacological mechanisms of drugs used to treat these CNS disorders. You will cover numerous human diseases including those with great significance such as Alzheimer's disease, epilepsy, schizophrenia and autism.

20 credits in the Spring Semester.

 
Evolutionary Biology of Animals

Introduces key evolutionary concepts and their application in the animal kingdom. Areas you will study include the history of evolutionary thinking, natural selection versus the neutral theory, sexual selection and human evolution.

10 credits in the Autumn Semester.

 
Developmental Biology

Examines the basic concepts of vertebrate embryonic development. You will discuss specific topics including germ cells, blood and muscle cell differentiation, left-right asymmetry and miRNAs. The teaching for this module is delivered through lectures. 

10 credits in the Spring Semester.

 

Or

Evolutionary Biology and Ecology specialism

40 credits from the following:

Ecology

You will learn about the forces determining the distribution and abundance of species and be able to use models to predict the dynamics of populations under a range of conditions. You will recognise how interactions between species can drive co-evolutionary processes leading to an understanding of the organisation of natural systems working systematically from populations through to communities, ecosystems and biogeographical scales.

20 compulsory credits in the Autumn Semester.

 
The Green Planet

This module explores the evolution of key plant systems through deep time, and the significance of this process for understanding modern ecology and food security. You will learn about the challenges that plants faced when moving onto land and evolutionary innovations within the early spermatophytes. You will also gain an understanding of the power of natural selection in producing plant diversity over deep time.

20 compulsory credits in the Spring Semester.

 

 

Plus a further 20 credits from the following options:

Animal Behaviour and Physiology

A comprehensive introduction to the study of animal behaviour, from the physiological and genetic bases of behaviour to its development through learning and its adaptive significance in the natural environment. Through practical classes, you will learn about the physiological basis of fundamental behaviours. Using examples from across the animal kingdom, you will learn how predictive modelling, experimental and observational approaches integrate to explain how and why animals behave as they do.

20 credits in the Spring Semester.

 
Building Brains

Studying this module, you'll be able to explain how the nervous system develops, is organised, and processes information. This will be achieved through presentation of comparative invertebrate and vertebrate studies, consideration of evolutionary concepts, and a detailed analysis of the development, structure, and function of the mammalian brain. The lecture sessions are complemented by workshops on Drosophila and chick embryo development, on the neuroanatomy of the human spinal cord, and dissection of pig brains subject to the availability of tissue.

20 credits in the Autumn Semester.

 
Infection and Immunity

You will study microbiology, learning about pathogenic microbes including viruses, fungi, parasites and the roles of bacteria in health and disease. You will learn how the body generates immunity; the causes of diseases associated with faulty immune responses will be considered. In applied microbiology you will be introduced to recombinant DNA technology and prokaryotic gene regulation.

20 credits in the Autumn Semeseter.

 
Evolutionary Biology of Animals

Introduces key evolutionary concepts and their application in the animal kingdom. Areas you will study include the history of evolutionary thinking, natural selection versus the neutral theory, sexual selection and human evolution.

10 credits in the Autumn Semester.

 
Reproductive Physiology

Reproductive Physiology of both male and female mammals including comparative information for farm animals and human. Reproductive physiological processes and their regulation from gametogenesis to fertilization and preparations for a successful pregnancy. Development of mammary glands and hormonal regulation of lactation will also be discussed. Principal features of avian reproduction and the avian maintenance of calcium homeostasis for efficient egg formation. Hormonal regulation of egg laying with emphasis on the nutritional and metabolic challenges associated with commercial rates of egg lay.  

Hands-on practical's have been changed to online dissection demonstrations that are performed by experts and are very nicely recorded. This helps students to understand the taught subject matter and provide additional understanding when observing live dissection. This can be viewed multiple times and helps students when preparing for assessment.

10 credits in the Autumn Semester.

 


Earth Science

Students take 60 credits from this list

Techniques in Physical Georgraphy
This module presents the opportunity for hands-on experience of laboratory, field and surveying techniques in physical geography appropriate to the domain of interest of the participants. To achieve these aims all students participate in field projects on a residential field course, some of which are completed in the laboratory back in Nottingham, leading to an individual project.

In addition, you choose further laboratory techniques to investigate in the second semester. The ethical, safety and fieldwork limitations of geographical work are also considered.

20 compulsory credits throughout the full year.

 
River Processes and Dynamics

This module:

  • introduces the water and sediment processes that operate in rivers
  • describes the characteristic forms of alluvial channels and the links between river processes and channel dynamics
  • uses laboratory practicals and a field trip to deliver kinaesthetic, student-centred learning and add value to teaching and learning during lectures

Topics covered include:

  • catchments and longitudinal patterns
  • river planforms: braided, meandering and straight
  • timescales of river change and morphological adjustments
  • complex response in the fluvial system
  • flow resistance, sediment transport and bank erosion
  • an introduction to biogeomorphology and aquatic ecology

20 credits in the Autumn Semester.

 
Earth Observation

This module provides a general introduction to the subject of earth observation. This involves analysing remotely sensed images, typically acquired from instruments on board satellites or aircraft, to investigate spatial phenomena on the Earth's surface.

Example topics include the use of global image data sets to investigate climate change, analysis of satellite sensor imagery to identify wildlife habitats and conservation concerns, and urban land use mapping from detailed aerial photography. Theoretical lectures cover the concepts underpinning remote sensing, including the physical principles determining image creation, fundamental image characteristics, methods of image analysis and uses or applications of earth observation.

There is also a strong practical component to the module, with regular practical exercises on various forms of digital image analysis.

20 credits in the Autumn Semester.

 
Soils

Overview: Soils are the most complex biomaterial on earth. An understanding of the basic concepts concerning the form and function of soils is important for future management strategies such as mitigating the effects of climate change and providing safe and sustainable food. This module focuses on the important soil properties from physical, chemical and biological perspectives including soil organic matter (microbiology and chemistry); soil chemical reactions (acidity, redox); soil fauna and flora; soil-water relations (irrigation and drainage).

10 credits

 
Environmental Geochemistry

This module will develop understanding of the important chemical and physical processes that operate in the terrestrial environment, principally within soils and fresh water systems.  It includes the study of the hydrological cycle, surface and sub-surface water chemistry including rainfall, rivers and lakes, processes that govern the movement of solutes and colloidal materials, adsorption, redox, solubility, diffusion and kinetics.

10 credits.

 
Spatial Decision Making

Overview: This module provides a consideration of:

  • Spatial Decision Making & the role that GIS has in this
  • Spatial Data Types and Sources
  • Vector and Raster Processing Algorithms
  • Professional Training in ArcGIS
  • Project planning, implementation and reporting

20 credits .

 

 

Year Three

You will continue with the same two subjects studied in the second year, taking 40-60 credits .

Compulsory year three module

Alongside subject-specific study, you will undertake a 20-credit synoptic module which aims to tie together the subjects you are studying through an interdisciplinary group project.

The Natural Sciences programme is by nature interdisciplinary but is mostly taught via specialized modules delivered by individual Schools with little exploration of the interfaces between the sciences. The synoptic module (C13602) gives students the opportunity to combine knowledge and skills acquired whilst on their pathway to carry out a (number of) interdisciplinary piece(s) of work.

20 credits throughout the full year.

 

Archaeology

Optional Archaeology modules

40-60 credits from the following options:

Humans-Animals-Landscapes relationships

The aim of this module is to demonstrate how data can be drawn together from multiple sources to highlight closely interwoven human-(non-human)animal-landscape relationships. As these are often indivisible, in reality if not worldview, the themes studied in this course would allow for a nuanced understanding of past societies but also a critical reflection of our own interactions. The periods and contents covered in this module would be broad and could be tailored by the students to fit their individual interests, teaching and research needs. 

20 credits in the Autumn Semester.

 
Medieval Europe and the Mediterranean AD 500-1500

This module considers the archaeological evidence for the development of British and European societies and their connections around the Mediterranean, Africa and across Eurasia in the medieval period (from c. AD 500-1500). This was a period of significant social, political, economic and climate change which laid the foundations of the modern world.

Key topics will include in-depth analysis of themes such as the transformation of European and Mediterranean landscapes and settlement patterns from the Fall of the Roman Empire to the Renaissance; the towns of western Europe, Byzantium and the Islamic world; the impact of climate change, epidemic disease and population growth; the rise of kingdoms, states and empires; and the development of nearly global trade networks in Europe, Africa and Asia, between AD 500 and 1500 that would culminate in permanent European settlement in the Americas.

The lectures and seminars will explore interdisciplinary approaches to the examination  of these topics and what they can tell us about social and economic change, ideologies and social identities over 1000 years of human history.

 20 credits in the Autumn Semester.

 
The Silk Road: cultural interactions and perceptions

The Silk Road will be presented as a range of archaeological, historical, geographical, political and scientific themes. Broad cultural themes will be balanced with the presentation of specific case studies, such as the Roman, Byzantine and (medieval) Islamic Silk Roads and their links with e.g. the Tang and Ming dynasties along the networks which made up the terrestrial and maritime silk and spice roads. Later examples will also be considered to provide a balance. The ways in which Silk Roads can be defined such as a consideration of trade and exchange of a wide range materials across central and eastern Asia will be considered. Furthermore scientific analysis and its role in the interpretation of trade and exchange will be considered between for example China, central Asia , Scandinavia and the Middle east. Nineteenth century and more recent perceptions of the Silk Road will be considered too. This cross-disciplinary approach will focus on a range of geographical areas during a range of time periods. Movement of peoples and things will therefore be considered from a wide range of viewpoints producing mutually enriching studies set in global contexts.

20 credits in the Autumn Semester.

 
Commodities, Consumption and Connections: the Global World of Things

This module takes advantage of a sweep of new interdisciplinary perspectives across a range of subject areas, including social, economic and cultural history, archaeology, anthropology and art history, which have focused on the role and significance of early modern ‘things’. Students will gain a fresh and stimulating grounding of central themes in early modern history as well as a deeper understanding of the importance of looking at early modern Europe as part of a globalising world. Students will explore a range of textual sources including wills and inventories, account books, letters and diaries which tell us about expanding global connections, what people consumed and how they thought about their objects. They will also be taught key methods and approaches for using physical objects, archaeological finds, museum collections and visual culture as primary sources for understanding early modern culture through the lens of object meanings, agency and networks, with opportunities for hands-on and digital engagement with sources of evidence. This interdisciplinary approach will enable students to understand the ways in which the study of material culture can provide fresh insights into everyday lives in the past and can also illuminate larger cultural histories and concerns.

20 credits in the Spring Semester.

 
Human Osteology

This module will examine what we can learn from the human skeleton, about the lives of people who lived in the past. We will also include some basic zooarchaeology to understand the similarities and differences between these two specialisms. The module will involve handling real archaeological human and non-human skeletons, learning how to identify their age, sex, stature, pathologies and taphonomy. We will also examine the demography of 19th century Nottingham on a fieldtrip to one of the city’s largest (and most atmospheric) cemeteries.

This module will introduce students to human and non-human skeletons, and the information that can be gained from them, including aging, sexing, stature, pathology and isotope analysis. Sampling strategies, data collection and analysis will also be covered using data collected by the students themselves on a fieldtrip. The aim of the module is to make students confident in handling human and zooarchaeological remains, to have the background necessary to undertake final year dissertations on either human remains or zooarchaeology, and to teach some basic data visualisation and analysis.

20 credits in the Spring Semester.

 
Rome and the Mediterranean

The module will examine the archaeological evidence for the Roman period in Italy and the Mediterranean from c. 300 BC to c. AD 550, in the context of the major social, cultural and economic changes of the region in this period and in the context of wider historical and archaeological approaches to the Mediterranean. It is aimed in particular at developing students’ skills in using and understanding source material. Subjects covered include the evidence for use of rural and urban landscapes, public and domestic building and the Mediterranean economy.

20 credits in the Spring Semester.

 
Through a Glass Darkly

Glass is a unique material with some unusual properties that were used in past societies in a wide range of ways. Archaeological, ethnographic, historical and scientific approaches will all be used to answer cultural questions about the production and use of glass in past societies. All seminars and lectures will consist of a rich interdisciplinary mix of approaches to ancient glass. The module uses archaeological case studies extensively and covers glass from the earliest made in the 3rd millennium BC up to the medieval period. Geographically we will cover glass that occurs in the West, the Middle East and as far away as China.

In practical sessions students will get the chance to handle ancient glass of a range of dates, including evidence for its production and to identify what it was used for. Students will work hot glass themselves in the Ancient Technology lab in Humanities – such as decorated glass bead making. They will also see at first hand through the use of University analytical equipment how the scientific analysis of glass can answer questions about ancient glass technology and provenance.

All lectures and discussion groups will be presented in a way that involves students and to encourage them to voice their opinions about different aspects of the study of ancient glass. The seminars in particular will give students the opportunities to develop a presentation and allow them think in detail about interpretations.

20 credits in the Spring Semester.

 


Biology

Students must take 40-50 credits in total from one of the specialisms.

Molecular Biology and Genetics specialism

30 compulsory credits:

Human Variation

Examines genetic variation in humans, including variation at the DNA level, and the study of human population history using genetic methods. Around three hours per week will be spent within lectures studying this module.

10 compulosry credits in the Autumn Semester.

 
Gene Regulation

Examines the mechanisms through which eukaryotic genes are expressed and regulated, with emphasis placed on recent research on transcriptional control in yeast and post-transcriptional control in eukaryotes. Studying this module will include having three hours of lectures per week.

10 compulsory credits in the Autumn Semester.

 
Molecular Biological Lab Skills

Examines the mechanisms through which eukaryotic genes are expressed and regulated, with emphasis placed on recent research on transcriptional control in yeast and post-transcriptional control in eukaryotes. Studying this module will include having three hours of lectures per week.

10 compulsory credits in the Spring Semester.

 

 

And 10-20 credits from the following:

Pathogens

This course, taught by 5 lecturers will give students an in depth understanding of the genetics, evolution and biochemistry behind the pathogenic properties of parasites and micro-organisms that cause major human disease in the present day. We will concentrate mainly on microbial aspects with one week on the genetics of human susceptibility. Students will learn about the specialised features of parasites and micro-organisms that make them pathogenic, how the genes encoding these features are regulated, and how biological, genetic and chemical tools can be used to develop preventative and curative treatments (two weeks). Model organisms to be studied include the agents of malaria (two weeks), leishmania (one week), candidiasis (one week), aspergillosis (one week), Salmonella, Escherichia and Shigella dysenteries (one week), and tuberculosis (one week). Students will also take part in a group-learning activity to produce a poster on an emerging or persistent pathogen explaining the molecular biology of its virulence. They will learn to use a questioning approach to gain an understanding of microbiological processes in the literature and how to present a scientific poster at a conference by presenting their group's work for peer and staff judging at a poster conference for 35% of the module mark.

10 credits in the Autumn Semester.

 
Advanced Developmental Biology

You will consider the molecular mechanisms underlying stem cell function during embryogenesis and adulthood. This will involve studies of regeneration and repair of tissues and pluripotency. You will have one two-hour lecture per week in this module.

10 credits in the Autumn Semester.

 
Molecular and Cellular Neuroscience

Considers ion channels at the molecular level, with topics including the structure and function of different ion channel groups and their modulation by drugs, pesticides and natural toxins. You will also consider the synthesis and transport of neurotransmitters and the formation and release of synaptic vesicles. This module involves one three hour session per week incorporating eight lectures and two practical sessions.

10 credits in the Autumn Semester.

 
Ageing, Sex and DNA Repair

Examine the molecular causes of the ageing and malignant transformations of somatic cells that are observed during a single lifespan, and gain an understanding of the necessity to maintain the genome intact from one generation to the next. Around three hours per week will be spent within lectures studying this module.

10 credits in the Spring Semester.

 
Cancer Biology

Examine a selection of acquired and inherited cancers, and develop an understanding of the role of the genes involved and how they can be analysed. To study for this module you will have a two- or three-hour lecture once per week.

10 credits in the Spring Semester.

 

Or 50 credits from this substream:

Evolutionary Biology and Ecology specialism

30 compulsory credits:

Evolutionary Ecology
The module will consider current knowledge of, and research into, the ecological causes and evolutionary processes that govern natural selection, adaptation and microevolution in natural populations. Three approaches to the study of evolutionary ecology will be used: theoretical and optimality models; the comparative method and direct measurement of natural selection in the wild.


Approximately one week will be spent on each of the following topics:

  • Natural selection and the causes of evolution
  • The genetic basis of variation and its maintenance
  • Evolutionary stable strategies
  • Evolution of life histories
  • Competition and evolution
  • Coevolution of predators and prey
  • Coevolution of hosts and parasites
  • Coevolution of mutualists
  • Ecology and the origin of species
  • Genomics in evolutionary ecology

10 compulsory credits in the Autumn Semester.

 
Conservation
The module looks in detail at the ideas and concepts underpinning conservation, particularly the effects of scale. The major role of habitat loss and fragmentation is explored, and the inadequacies of local conservation measures. Conservation practitioners are brought in to speak about their jobs and how to work in conservation. Quantitative approaches are emphasized, and the skills needed to contribute are developed in a set of practical exercises.

20 compulsory credits in the Spring Semester.

 

 

And 20 credits from the following:

Molecular and Cellular Neurosciences

Considers ion channels at the molecular level, with topics including the structure and function of different ion channel groups and their modulation by drugs, pesticides and natural toxins. You will also consider the synthesis and transport of neurotransmitters and the formation and release of synaptic vesicles. This module involves one three hour session per week incorporating eight lectures and two practical sessions.

10 credits in the Autumn Semester.

 
Molecular Evolution

The module examines how we can use DNA and protein sequences to investigate evolutionary relationships among organisms.

The subject matter includes the alignment of DNA and protein sequences, the way in which DNA and protein sequences evolve and how these processes can be modeled, the construction of evolutionary trees (phylogenies) to determine relationships among organisms, and the use of molecular clocks to place evolutionary events within a timeframe.

The course provides numerous examples of the uses of molecular sequence data in evolutionary studies, highlighting the way in which sequence data are revolutionising our understanding of the living world and shows how understanding molecular evolution to produce accurate trees is crucial to understanding evolutionary mechanisms.

In depth examples include the uses of molecular data to resolve the deep-level relationships in the ‘tree of life’ (relationships among the three domains of life), the origins of mitochondria and chloroplasts, and the application of molecular data to study relationships in the Mammalia and in particular the Cetacea.

The use of molecular data in understanding phylogeography is also discussed, with particular emphasis on the recolonisation of Europe following the retreat of the ice at the end of the last glacial period. We also discuss the uses of genomic data to examine evolution.

10 credits in the Spring Semester.

 
Science and Society

Scientific discoveries are not isolated from the society within which they exist. This module will explore the interactions between science and society through a series of lectures, discussion groups and workshops.

Topics that will be explored include the ethical parameters that govern how scientific work is constrained, ways in which scientific discoveries can/should be disseminated to the wider community, the wider responsibilities that follow the acquisition of new knowledge and the concept of 'citizen science', where science takes place outside the traditional academic centres of work.

10 credits in the Spring Semester.

 
Molecular Biological Lab Skills

Examines the mechanisms through which eukaryotic genes are expressed and regulated, with emphasis placed on recent research on transcriptional control in yeast and post-transcriptional control in eukaryotes. Studying this module will include having three hours of lectures per week.

10 compulsory credits in the Spring Semester.

 

 

Earth Science

Y3 students take 40-60 credits from the following:

Geological Hazards and Resources

A geohazard is a natural process or phenomenon that has the potential to adversely affect humanity by endangering life or property. A geo resource is a substance or commodity that can be extracted from the subsurface for use by humanity. This module will spend one semester focussing on these two important issues for Environment and Society.

20 credits throughout the full year.

 
Freshwater Management 

This module considers human attempts to manage and restore freshwater environments, specifically rivers, lakes and wetlands. It considers changes in the fluvial system that occur in response to river management and engineering and examines approaches to restoring the natural functions of rivers that have been heavily degraded by human impacts.

The module examines some of the main stressors on lakes and wetlands lake management, and approaches for their management using an ecosystem-scale approach. The principles by which restoration practice is guided will be considered, and criteria for selection between alternative strategies will be introduced. The module will consider water quality and legislative requirements for freshwater bodies.

The module includes a field trip where you will visit a local nature reserve and develop a management plan with input from management practitioners and land-owners. You will also be able to engage with river management practitioners in a series of guest lectures.

20 credits in the Autumn Semester.

 
Environmental Pollutants
 
Geophysics and Geological Mapping
 
Mineralogy and petrology
 
Palaeobiology

Palaeobiology explores the relationship between life and the Earth's physical and chemical environment over geological/ evolutionary time. The module will focus on the geological consequences of evolution and how life has influenced physical and chemical environment. Topics covered will include: Origins and evolution of life; Evolution of the atmosphere and biosphere; the geobiology of critical intervals in both palaeobiology and evolutionary ecology. Students will gain an in depth knowledge of the mechanisms that control changes in the physiochemical environmental and their impact upon evolution. In order to gain a broad understanding the module will explore past changes as seem in the fossil record, together with present day processes that underpin these responses. The lectures and course work will give students knowledge of the tools that are used to reconstruct past environmental conditions and the effect of future changes in the abiotic stimuli that drive environmental change.

10 credits in the Autumn semester.

 

Year Four (MSci students only)

You will choose one of your third-year subjects to focus on in the fourth year, spending half your time working on an independent research project aiming to develop the skills needed to pursue a career in research. 

All students take 120 credits of modules in the fourth year and each subject has a minimum number of credits listed. Students can take 120 credits from a single subject (where available) or they can use modules from their second subject to make up the difference between the minimum and the required number of credits.

Archaeology

  • Dissertation (60 credits, full year)
    This is a 10,000 word individual project based on a geographical topic involving fieldwork and/or secondary data, and agreed by the candidate with their tutor and a specialist supervisor.
  • Special Topics in Archaeology 1 (20 credits, Autumn semester)
    This module provides in-depth coverage of a topic selected jointly by students and the specialist member of staff. It is designed to meet the needs of postgraduate students for study tailored to their specific requirements, and will be particularly useful for students intending to proceed to doctoral research.
  • Special Topics in Archaeology 2 (20 credits, Spring semester)
    This module aims to provide in-depth coverage of a topic selected jointly by the specialist member of staff and the students concerned. It is designed to meet the needs of postgraduate students for study tailored to their specific requirements, and will be particularly useful for students intending to proceed to doctoral research.

You must take a minimum of 100 credits from archaeology throughout the year.

 

Biology

You must take 120 credits from biology throughout the year.

100 compulsory credits:

Life Sciences Fourth Year Project
The project is a year-long module. Preparatory work (familiarisation with laboratory/field safety protocols etc.) will occur in autumn, with the bulk of practical work in spring. The topic of the project will be chosen from a list of suggestions relevant to the degree subject, and will be finalised after consultation with a member of staff, who will act as a supervisor.

The project involves an extensive piece of detailed research on the topic chosen after discussion with the supervisor. The practical component will involve collection of data from a laboratory or field investigation and appropriate analysis. The findings will be interpreted in the context of previous work, and written-up in a clear and concise final report in the form of a research paper manuscript or end-of-grant report. The main findings will also be delivered in an assessed oral presentation and discussed with two assessors in a viva voce.

60 compulsory credits throughout the full year.

 
Research Planning and Preparation
This is a year-long module, but with most of the work being complete by the end of January. The module focuses on the preparing students to engage in substantial independent research in Life Sciences, and is supported by lecture content in Research Presentation Skills. Students choose a research topic from a list provided the previous academic year, and are allocated an individual research supervisor accordingly. In regular meetings, student and supervisor discuss relevant research literature and design a practical research project addressing a specific hypothesis. Assessment is via a substantial research proposal.

20 compulsory credits throughout the full year.

 
Research Presentation Skills
The module aims to provide students with a range of presentation and IT skills that are essential for modern biological researchers. The workshop content will provide a conceptual framework, while journal clubs and coursework will deliver the hands-on experience required to develop appropriate practical skills.

20 compulsory credits throughout the full year.

 

 

Plus a further 20 credits from the following options:

  • Cutting-edge Research Technologies and Ideas in Molecular Biology
This module focusses on laboratory methods and ideas which are currently emerging in molecular biology. Students will be exposed to the mechanisms and methods that generate the data they go on to analyse. Assessment will include presentations and ongoing assessment.

10 credits in the Autumn Semester.

 
  • Advanced Experimental Design and Analysis
This is an advanced level biological statistics module which builds on basic undergraduate training. Lectures discuss concepts in experimental design, biological probability, generalised linear modelling and multivariate statistics. Practical sessions build on this conceptual outline, giving you hands-on experience of problem solving and analytical software, and some basic programming skills. You will spend three to four hours within lectures and workshops when studying this module.

10 credits in the Autumn Semester.

 
  • Process and Practice in Science
A consideration of science ‘as a process’, with brief introductions to the history, philosophy and sociological norms of science. You will cover aspects of the scientific literature and scientific communication, peer review, 'metrics’, including citation analysis, journal impact factors, and the 'h' and other indices of measuring scientists' performances. You will also cover ethics in science and the changing relationship between scientists, government and the public. You will have a three hour lecture once per week during this module.

10 credits in the Autumn Semester.

 

 

Earth Science

You must a take a minimum of 80 and a maximum of 120 credits from earth science throughout the year. 

60 compulsory credits:

Natural Sciences Dissertation

The aim of the module is to provide training for the description, planning and conduct of a programme of research in order to solve or report on a specific scientific problem. The MSci project is taken in both the autumn and spring semesters and comprises 60 credits. In the autumn the student will work with the supervisor to devise a projectby identifying an appropriate topic before focusing on a specific scientific problem. This will involve regular planning meetings and individual research by the student. In the spring semester the students will undertake the main body of work for the project which may be experimental, computer, literature or theoretically based (or various combinations of these). The student will continue to have, as a minimum, monthly supervisor meetings and document all progression in their project notebooks. The module is assessed by a project write up in the style of a scientific paper, the project notebook and a poster presentation with an oral component to the staff and the student cohort.

60 compulsory credits  throughout the full year.

 

 

A minimum of 20 and up to a maximum of 60 credits can be selected from the following:

Water Quality Assessment

This module provides an overview of water quality assessment techniques, including chemical, biological, sensor and long-term reconstruction methods. The majority of the module will be taught as part of a residential three-day field course, supplemented with laboratory practical work. You will get hands-on experience in techniques and their application.

The module will be underpinned training in the by a theoretical understanding of the water quality and its drivers at a variety of spatial and temporal scales. Training will include how to devise appropriate water quality management plans and use of benchmarking tools from environmental monitoring agencies.

10 credits in the Autumn Semester.

 
Advances in Managing Rivers and Catchments

This module will focus on the following themes:

  • Key river and catchment processes 
  • Impacts of anthropogenic (ie climate, land-use) change on rivers and catchments
  • Current and historic river/catchment management practises 
  • Tools and techniques for monitoring and mapping rivers and catchments
  • Modelling rivers and catchments to test management scenarios

10 credits in the Spring Semester.

 
Statistics and Experimental Design

Principles of experimentation in crop science, basic statistical principles, experimental design, hypothesis testing, sources of error, analysis of variance, regression techniques, presentation of data, use of Genstat for data analysis. There are two routes through the module; one focusing on crop improvement and one focusing on more general issues.

10 compulsory credits throughout the year.

 
Communication and Public Engagement

This module considers:

  • The importance of engaging publics with cutting edge research
  • Methods of engagement that are suitable for varying audiences
  • How to write for varied audiences
  • How to engage with policymakers and industry
  • Public speaking skills
  • The planning, development and delivery of an engagement event for the public/policymakers

10 compulsory credits in the Spring semester.

 


Disclaimer
This online prospectus has been drafted in advance of the academic year to which it applies. Every effort has been made to ensure that the information is accurate at the time of publishing, but changes (for example to course content) are likely to occur given the interval between publishing and commencement of the course. It is therefore very important to check this website for any updates before you apply for the course where there has been an interval between you reading this website and applying.

Natural Sciences

School of Mathematical Sciences, University of Nottingham
University Park
NG7 2RD

Tel: +44 (0) 115 823 2376
Fax: +44 (0) 115 951 3555
Email: naturalsciences@nottingham.ac.uk