Natural Sciences

Mathematical Sciences, Psychology and Chemistry

Natural Sciences is a multidisciplinary degree which allows you to study three subjects in the first year and continue with two subjects in the second and third year. 

Year One

You will study 40 credits of each subject from your chosen three-subject streams.

Mathematical Sciences

Students must take 40 compulsory credits.

Calculus and Linear Algebra

Basic theory is extended to more advanced topics in the calculus of several variables. In addition, the basic concepts of complex numbers, vector and matrix algebra are established and extended to provide an introduction to vector spaces. Students are introduced to different types of proof, such as direct proof, proof by contradiction and proof by induction, as well as theorems and tests for determining the limits of sequences and series. An emphasis in the course is to develop general skills and confidence in applying the methods of calculus and developing techniques and ideas that are widely used and applicable in subsequent modules.

40 compulsory credits throughout the year

 


Psychology

Students taking Psychology must take 40 credits from one of the following specialism:

Biological Psychology specialism

Cognitive Psychology 1
Cognitive psychology is the study of mental processes, and this module will provide an introduction to the methods used by cognitive psychologists in their investigations of mental processes in humans.

A wide range of topics will be discussed, with some introductory discussion of how they limit human performance in applied contexts. The mental processes to be covered include those that support attention, perception, language, memory, and thinking.

You will have two one-hour lectures per week for this module.

20 compulsory credits in the Autumn Semester.

 
Biological Psychology 1

An introduction to the neural and biological bases of cognition and behaviour. You will learn about the structure and evolution of the brain and the main functions of the different parts.

You will examine how the brain receives, transmits, and processes information at the neural level, as well as its visual pathways. The main scientific methods for investigating brain and behaviour will also be covered.

You will have two hours of lectures weekly.

20 compulsory credits in the Spring Semester.

 

Or

Social & Developmental Psychology specialism


Cognitive Psychology 1
Cognitive psychology is the study of mental processes, and this module will provide an introduction to the methods used by cognitive psychologists in their investigations of mental processes in humans.

A wide range of topics will be discussed, with some introductory discussion of how they limit human performance in applied contexts. The mental processes to be covered include those that support attention, perception, language, memory, and thinking.

You will have two one-hour lectures per week for this module.

20 compulsory credits in the Autumn Semester.

 
Developmental Psychology

An introduction to the fascinating world of the developing child.

Lectures consider different theoretical, applied, and experimental approaches to cognitive, linguistic, and social development from early to late childhood.

Topics include the development of thinking, perception, drawing, understanding the mind, intelligence, attachment, language, and moral development.

You will have a one-hour lecture weekly.

10 compulsory credits in the Autumn Semester.

 
Social Psychology

An introduction to the core topics in social psychology, which is concerned with trying to understand the social behaviour of individuals in terms of both internal characteristics of the person (e.g. cognitive mental processes) and external influences (the social environment).

Lectures will cover topics including how we define the self, attitudes, attribution, obedience, aggression, pro-social behaviour and formation of friendships.

You will have a one-hour lecture weekly.

10 compulsory credits in the Spring Semester.

 


Chemistry

40 compulsory credits:

Fundamental Chemistry Theory and Practical
This module shows how trends in chemical properties can be related to the structure of the Periodic Table and rationalise descriptive inorganic chemistry. 

To provide a fundamental understanding of the basics of organic chemistry, including nomenclature, molecular structure and bonding, stereochemistry and the chemical reactivity of common functional groups and reaction types through an understanding of their electronic properties. 

To provide an introduction to fundamental physical aspects of chemistry, which underpins all areas of Chemistry - emphasis will be placed on being able to apply knowledge, especially in solving problems. 

To introduce a range of chemical techniques appropriate to the study of inorganic, organic and physical chemistry at first year level, which will act as a foundation for more advanced work in subsequent years.

40 compulsory credits throughout the full year.

 

Compulsory module

All students are required to take a compulsary module, Academic and Transferable Skills Portfolio. This will be taught throughout the first full year. It will support organisational and professional competancies which will be used during the course.


Year Two

You will continue on your stream comprising of two of your first year subjects. You will take 60 credits of modules from each subject and greater emphasis will be put on studying outside of formal classes.

Mathematical Sciences

Students taking Maths must take 60 credits from their chosen specialism:

Applied, Computation and Statistics specialism

20 compulsory credits:

Vector Calculus

This course aims to give students a sound grounding in the application of both differential and integral calculus to vectors, and to apply vector calculus methods and separation of variables to the solution of partial differential equations. The module is an important pre-requisite for a wide range of other courses in Applied Mathematics.

10 credits in the Autumn Semester

 
Differential Equations and Fourier Analysis

This course is an introduction to Fourier series and integral transforms and to methods of solving some standard ordinary and partial differential equations which occur in applied mathematics and mathematical physics.

The course describes the solution of ordinary differential equations using series and introduces Fourier series and Fourier and Laplace transforms, with applications to differential equations and signal analysis. Standard examples of partial differential equations are introduced and solution using separation of variables is discussed.

10 credits in the Spring Semester

 

 

And 40 optional credits from the following modules:

Applied Statistics and Probability

The module covers introductory topics in statistics and probability that could be applied to data analysis in a broad range of subjects. Topics include probability distributions, parameter estimation, confidence intervals,hypothesis testing and an introduction to statistical modelling. Consideration is given to issues in applied statistics such as sample size calculations, the multiple comparison problem,data collection, design of experiments, critiquing and interpreting statistical reports and papers.

20 credits throughout the full year.

 
Modelling with Differential Equations

This course aims to provide students with tools which enable them to develop and analyse linear and nonlinear mathematical models based on ordinary and partial differential equations. Furthermore, it aims to introduce students to the fundamental mathematical concepts required to model the flow of liquids and gases and to apply the resulting theory to model physical situations. 

20 credits throughout the full year.

 
Introduction to Scientific Computation

This module introduces basic techniques in numerical methods and numerical analysis which can be used to generate approximate solutions to problems that may not be amenable to analysis.

Specific topics include:

  • Implementing algorithms in Matlab
  • Discussion of errors (including rounding errors)
  • Iterative methods for nonlinear equations (simple iteration, bisection, Newton, convergence)
  • Gaussian elimination, matrix factorisation, and pivoting
  • Iterative methods for linear systems, matrix norms, convergence, Jacobi, Gauss-Siedel
  • Interpolation (Lagrange polynomials, orthogonal polynomials, splines)
  • Numerical differentiation & integration (Difference formulae, Richardson extrapolation, simple and composite quadrature rules)
  • Introduction to numerical ODEs (Euler and Runge-Kutta methods, consistency, stability) 

20 credits throughout the full year.

 

 

Mathematical Physics specialism

60 compulsory credits:

Introduction to Mathematical Physics

This course develops Newtonian mechanics into the more powerful formulations due to Lagrange and Hamilton and introduces the basic structure of quantum mechanics. The course provides the foundation for a wide range of more advanced courses in mathematical physics.

20 credits through the full year.

 
Modelling with Differential Equations

This course aims to provide students with tools which enable them to develop and analyse linear and nonlinear mathematical models based on ordinary and partial differential equations. Furthermore, it aims to introduce students to the fundamental mathematical concepts required to model the flow of liquids and gases and to apply the resulting theory to model physical situations. 

20 credits throughout the full year.

 
Vector Calculus

This course aims to give students a sound grounding in the application of both differential and integral calculus to vectors, and to apply vector calculus methods and separation of variables to the solution of partial differential equations. The module is an important pre-requisite for a wide range of other courses in Applied Mathematics.

10 credits in the Autumn Semester.

 
Differential Equations and Fourier Analysis

This course is an introduction to Fourier series and integral transforms and to methods of solving some standard ordinary and partial differential equations which occur in applied mathematics and mathematical physics.

The course describes the solution of ordinary differential equations using series and introduces Fourier series and Fourier and Laplace transforms, with applications to differential equations and signal analysis. Standard examples of partial differential equations are introduced and solution using separation of variables is discussed.

10 credits in the Spring Semester.

 

Psychology

Students taking Psychology must take 60 credits from their preferred specialism:

Biological Psychology specialism

Cognitive Psychology 2

This module will examine:

  • Perception, with particular emphasis on vision, but also hearing, taste, touch and smell;
  • The Psychology of Language, including linguistic theory, speech, parsing, word meaning, and language production
  • The Psychology of Reading, including word recognition, theories of eye-movement control, and reading multi-media displays
  • Human Memory, covering the basics of encoding, storage and retrieval with particular reference to real-world applications of memory research
  • Thinking and Problem Solving, including heuristics, biases, evolutionary perspectives on human rationality, and group decision making

20 compulsory credits in the Autumn Semester.

 
Neuroscience and Behaviour

This module will cover several issues in neuroscience and behaviour that are particularly relevant to understanding the biological bases of psychological functions. Among the topics to be covered are:

  • psychopharmacology
  • psychobiological explanations of mental disorders
  • dementia
  • sexual development and behaviour
  • methods of studying neuropsychological processes
  • the effects of brain damage on mental functioning including amnesias, agnosias and aphasias
  • introduction to classical and instrumental conditioning
  • theories of associative learning and memory
  • what forgetting might tell us about learning
  • topics in comparative cognition and cognitive abilities
  • can animals do anything apart from conditioning?

20 compulsory credits in the Spring Semester.

 
Research Methods and Analysis

The module is intended to support the development of practical skills in running experiments in psychology. Skills include experimental design; interpretation summary data and inferential statistics; ‘building’ experiments withthe computer-based user-interface, PsychoPy. Small groups will work on supervisor-guided projects in thedevelopment of these skills and will submit a report for assessment.

20 compulsory credits throughout the full year.

 

Or

Social and Developmental specialism

Cognitive Psychology 2

This module will examine:

  • Perception, with particular emphasis on vision, but also hearing, taste, touch and smell;
  • The Psychology of Language, including linguistic theory, speech, parsing, word meaning, and language production
  • The Psychology of Reading, including word recognition, theories of eye-movement control, and reading multi-media displays
  • Human Memory, covering the basics of encoding, storage and retrieval with particular reference to real-world applications of memory research
  • Thinking and Problem Solving, including heuristics, biases, evolutionary perspectives on human rationality, and group decision making

20 compulsory credits in the Autumn Semester.

 
Conceptual and Historical Issues

You’ll learn about the scientific, historical, and philosophical underpinnings of psychology as a discipline, which will demonstrate the inherent variability and diversity in the theoretical approaches to psychology.

By the end of the module, you will have a good knowledge and critical understanding of the influences of history on psychological theories.

There will be two hours of lectures per week.

10 compulsory credits in the Autumn Semester.

 
Personality & Individual Difference

This module covers the psychological explanations of personality and individual differences, and the relationship between the individual and society will be highlighted. In particular, the major personality theories are considered in detail and the application of these theories to areas such as abnormal psychology and health psychology are discussed. IQ is also covered and evolutionary bases of traits.

10 compulsory credits in the Autumn Semester.

 
Social and Developmental Psychology

This module examine a range of issues in social and developmental psychology including:

  • Current issues in social psychology
  • Social cognition and social thinking
  • Attribution
  • Attitudes
  • Persuasive communication and attitude change
  • Social Influence
  • Conformity and obedience
  • Group decision making and behaviour change culture
  • Intergroup behaviour
  • Prejudice and discrimination
  • Perceptions and motivations
  • Evolution of mentalising and theory of mind
  • Ontology of mentalising: Development of theory of mind in children
  • Mindblind: Autism spectrum disorder
  • Phylogeny: The mental world of Apes
  • Development of synaesthesia
  • Language acquisition
  • Adult perceptual development: sensory substitution and augmentation
  • Conceptual development: colour cognition
  • Reading and spelling development

20 compulsory credits in the Spring Semester.

 


Chemistry

50 compulsory credits from your chosen sub-stream plus 10 optional credits:

Organic and Inorganic Chemistry

Intermediate Organic Synthesis and Spectroscopy 

Develop an understanding of modern spectroscopic techniques (NMR, IR, UV and mass spectrometry) for the characterisation of organic and biological molecules to the extent that students have an intuitive approach to problem solving and structural analysis.

Aspects of the stereochemistry of bio-organic molecules, including prochirality, molecular chirality and properties of non-racemic compounds, conformational analysis and aspects of stereocontrol in bio-organic reactions are developed.

10 credits in the Autumn semester.

 
Intermediate Synthetic Organic Chemistry

The module is divided into two parts:

1. Functional group chemistry: synthetic transformations of alcohols, amines, carbonyls, and alkenes, and how these transformations are used to synthesise complex molecules such as natural products or pharmaceutical agents.

2. Synthesis: Introduction to retrosynthetic analysis and synthesis of organic molecules using a selection of pharmaceutical agents as examples. Formative feedback is given on the material in this module at the associated workshops. Summative feedback is provided after the exam by the module convenor.

 

10 credits in the Spring semester.

 
Core Laboratory Work 'N'

This module builds on the practical, analytical and communication skills acquired in the first year and introduces more advanced experiments across Inorganic, Organic and Physical chemistry (note – students choose 2 of the 3 from Inorganic, Organic and Physical Chemistry). Increasing use is made of spectroscopic and other analytical techniques in the characterisation of compounds. More detailed laboratory reports will be required.

Students will:
• Be able to perform a range of standard & more advanced synthetic and analytical practical procedures safely and reliably using Good Chemistry Laboratory Practice (GCLP).
• Know how to prepare Control of Substances Hazardous to Health (COSHH) and risk assessments.
• Be proficient in planning and organising time so that experiments are performed efficiently in the allocated time.
• Be competent in calculating amounts of reagents accurately.
• Be capable of accurately and precisely measuring reagents and preparing solutions.
• Be able to scientifically interpret results and observations and report your findings in a concise manner.

20 compulsory credits throughout the full year.

 
Intermediate Inorganic Chemistry

In this module students will gain knowledge and understanding of the importance of Main Group compounds across all branches of chemistry and materials science.

Education aims:

To survey the classical and new chemistry of the main group elements. 

To use group theory as a tool in the analysis of vibrational spectra in inorganic chemistry.

To give a concise introduction to the organometallic chemistry of the transition metals.

To use multinuclear NMR spectroscopy as a tool for the characterisation of molecules.

 

10 compulsory credits throughout the full year.

 

Or

Inorganic and Physical Chemistry specialism

Energy, Spectroscopy and Solid State Chemistry

This module introduces and builds on theories that can predict and describe accurately the physical principles underlying chemical phenomena, with emphasis on energy, quantum mechanics, spectroscopy and the solid state.

The module includes a basic introduction to quantum mechanics in Chemistry and an introduction to a range of spectroscopies applied to diatomic molecules. It will be shown how these methods are used to find out and understand information about the structure and bonding in diatomic molecules. Methods for calculating thermodynamic properties of single-component and multi-component materials in different phases will be developed, and there will be an introduction to solid-state chemistry, including the structure, characterisation, energetics and simple band theory of solids.

20 compulsory credits throughout the full year.

 
Core Laboratory Work 'N'

This module builds on the practical, analytical and communication skills acquired in the first year and introduces more advanced experiments across Inorganic, Organic and Physical chemistry (note – students choose 2 of the 3 from Inorganic, Organic and Physical Chemistry). Increasing use is made of spectroscopic and other analytical techniques in the characterisation of compounds. More detailed laboratory reports will be required.

Students will:
• Be able to perform a range of standard & more advanced synthetic and analytical practical procedures safely and reliably using Good Chemistry Laboratory Practice (GCLP).
• Know how to prepare Control of Substances Hazardous to Health (COSHH) and risk assessments.
• Be proficient in planning and organising time so that experiments are performed efficiently in the allocated time.
• Be competent in calculating amounts of reagents accurately.
• Be capable of accurately and precisely measuring reagents and preparing solutions.
• Be able to scientifically interpret results and observations and report your findings in a concise manner.

20 compulsory credits throughout the full year.

 
Intermediate Inorganic Chemistry

In this module students will gain knowledge and understanding of the importance of Main Group compounds across all branches of chemistry and materials science.

Education aims:

To survey the classical and new chemistry of the main group elements. 

To use group theory as a tool in the analysis of vibrational spectra in inorganic chemistry.

To give a concise introduction to the organometallic chemistry of the transition metals.

To use multinuclear NMR spectroscopy as a tool for the characterisation of molecules.

 

10 compulsory credits throughout the full year.

 

Optional Chemistry modules

And select an additional 10 credits from the following options:

Principles of Analytical Chemistry

You’ll be introduced to the principles of analytical chemistry, including the principal types of instrumentation used and the statistical treatment of analytical results.

You’ll attend two lectures each week studying this module.

10 credits in the Autumn semester.

 
Sustainable Chemistry

This module covers material related to developing a more sustainable approach to chemistry. You will learn what constitutes sustainable chemistry, the significance of new technologies such as synthetic biology, and recognise the problems in achieving sustainability.

10 credits in the Autumn semester.

 

 

Year Three

You will continue with the same two subjects studied in the second year, taking 50 credits in each.

Compulsory year three module

Alongside subject-specific study, you will undertake a 20-credit compulsory synoptic module which aims to tie together the subjects you are studying through an interdisciplinary group project.

The Natural Sciences programme is by nature interdisciplinary but is mostly taught via specialized modules delivered by individual Schools with little exploration of the interfaces between the sciences. The synoptic module (C13602) gives students the opportunity to combine knowledge and skills acquired whilst on their pathway to carry out a (number of) interdisciplinary piece(s) of work.

20 credits throughout the full year.


Mathematical Sciences

Students taking Maths must take a total of 50 credits from their chosen specialism:

Applied, Computation & Statistics specialism

Select 50 credits from the below modules:

Optimization

In this module a variety of techniques and areas of mathematical optimisation will be covered including Lagrangian methods for optimisation, simplex algorithm linear programming and dynamic programming. You’ll develop techniques for application which can be used outside the mathematical arena. 

20 credits in the Autumn Semester.

 
Mathematical Medicine and Biology

Mathematics can be usefully applied to a wide range of applications in medicine and biology. Without assuming any prior biological knowledge, this course describes how mathematics helps us understand topics such as population dynamics, biological oscillations, pattern formation and nonlinear growth phenomena. There is considerable emphasis on model building and development.

20 credits in the Autumn Semester.

 
Coding and Cryptography

This course provides an introduction to coding theory in particular to error-correcting codes and their uses and applications. It also provides an introduction to to cryptography, including classical mono and polyalphabetic ciphers as well as modern public key cryptography and digital signatures, their uses and applications.

10 credits in the Autumn Semester.

 
Game Theory

Game theory contains many branches of mathematics (and computing); the emphasis here is primarily algorithmic. The module starts with an investigation into normal-form games, including strategic dominance, Nash equilibria, and the Prisoner’s Dilemma. We look at tree-searching, including alpha-beta pruning, the ‘killer’ heuristic and its relatives. It then turns to mathematical theory of games; exploring the connection between numbers and games, including Sprague-Grundy theory and the reduction of impartial games to Nim.

10 credits in the Spring Semester.

 
Fluid Dynamics

This course aims to extend previous knowledge of fluid flow by introducing the concept of viscosity and studying the fundamental governing equations for the motion of liquids and gases. Methods for solution of these equations are introduced, including exact solutions and approximate solutions valid for thin layers. A further aim is to apply the theory to model fluid dynamical problems of physical relevance.

20 credits in the Spring Semester.

 
Topics in Scientific Computation
Description is under review.
 

Or

Mathematical Physics specialism

Select 50 credits from the below modules

Differential Equations

This course introduces various analytical methods for the solution of ordinary and partial differential equations, focussing on asymptotic techniques and dynamical systems theory. Students taking this course will build on their understanding of differential equations covered in Modelling with Differential Equations.

20 credits in the Autumn Semester.

 
Fluid Dynamics

This course aims to extend previous knowledge of fluid flow by introducing the concept of viscosity and studying the fundamental governing equations for the motion of liquids and gases. Methods for solution of these equations are introduced, including exact solutions and approximate solutions valid for thin layers. A further aim is to apply the theory to model fluid dynamical problems of physical relevance.

20 credits in the Spring Semester.

 
Relativity

In this module you’ll have an introduction to Einstein’s theory of general and special relativity. The relativistic laws of mechanics will be described within a unified framework of space and time. You’ll learn how to compare other theories against this work and you’ll be able to explain new phenomena which occur in relativity.

20 credits in the Spring Semester.

 
Coding and Cryptography

This course provides an introduction to coding theory in particular to error-correcting codes and their uses and applications. It also provides an introduction to to cryptography, including classical mono and polyalphabetic ciphers as well as modern public key cryptography and digital signatures, their uses and applications.

10 credits in the Autumn Semester.

 
Game Theory

Game theory contains many branches of mathematics (and computing); the emphasis here is primarily algorithmic. The module starts with an investigation into normal-form games, including strategic dominance, Nash equilibria, and the Prisoner’s Dilemma. We look at tree-searching, including alpha-beta pruning, the ‘killer’ heuristic and its relatives. It then turns to mathematical theory of games; exploring the connection between numbers and games, including Sprague-Grundy theory and the reduction of impartial games to Nim.

10 credits in the Spring Semester.

 


Psychology

Students taking Psychology must take a total of 50 credits from their chosen specialism:

Biological Psychology specialism

30 compulsory credits:

Neuropsychology and Applied Neuroimaging

An introduction to the neural and biological bases of cognition and behaviour. You will learn about the structure and evolution of the brain and the main functions of the different parts.

You will examine how the brain receives, transmits, and processes information at the neural level, as well as its visual pathways. The main scientific methods for investigating brain and behaviour will also be covered.

You will have two hours of lectures weekly.

10 compulsory credits in the Autumn Semester.

 
Neuropsychology of Action

This module examines the psychological and neural basis for the planning and control of human action. You will be introduced to scientific research through guided exploration of the neuropsychological bases for human action. You will experience the multi-disciplinary nature of research into human behaviour and, by the end of the module, will understand how a single issue can be addressed from multiple perspectives including: experimental psychology, neurophysiology, neuroanatomy, neuropsychology, and functional brain-imaging.

10 compulsory credits in the Autumn Semester.

 
The Visual Brain

The central theme of this module is to explore how the architecture and function of the visual brain have been designed and shaped by experiences over a range of timescales. 

Over the years of development, brain plasticity is the driving force for the maturation of different visual brain functions. Even well into adulthood, plasticity is retained in the form of learning, which can optimise performance for certain visual tasks and be exploited for therapeutic uses.

This module will examine the consequences of evolution, development, learning and adaptation for visual brain function and perception.

10 compulsory credits in the Spring Semester.

 

 

And 20 credits from the following optional modules:

Social Neuroscience Research

To provide students with an advanced understanding of current social and cognitive neuroscience topics, as well as an understanding of the methods and analyses required to test specific theories related to that topic, and guidance on the critical evaluation of research papers. Students will receive lectures on and study a specific social neuroscience issue in detail, and will devise ways to further research into that issue.

The course will provide an introduction to neuroscience methods and will focus on current research and theory behind various aspects of human social interaction, speech communication and body perception from a neuroscience perspective. Complementary evidence from different branches of behavioural and cognitive sciences will be integrated with current neuroscientific research.

The course will focus predominantly on the neural mechanisms thought to be involved in the interpretation of our own and others’ bodies, actions, faces, voices and emotions. The course will also provide advice on developing ideas for research as well as how to write for each assessment.

20 credits throughout the full year.

 
Mechanisms of Learning and Psychopathology

Supported by lectures, seminars and tutorials, this module aims to provide you with an understanding of the mechanisms of learning and memory in human and non-human animals, and an analysis of pathological conditions involving these systems.

You’ll study topics that include:

  • perceptual learning
  • the contextual and attentional modulation of learning and behaviour
  • neuroscience-focused topics such as the role of the hippocampus in memory

Clinical topics include:

  • the acquisition of phobias
  • memory discords
  • the psychological side effects of cancer treatment
  • depression

There are two hours per week of lectures for this module.

20 credits throughout the full year.

 
Cognitive Developmentand and Autism

You will cover modern version of nativist and empiricist theories of cognitive development.

This module will also give you an overview of current theories which have been proposed to explain Autism Spectrum Disorder. It will provide an evaluation of these theories using behavioural, clinical and neurophysiological evidence from a range of domains including drawing and musical skills (savant skills), scientific knowledge, maths, social learning (trust and imitation) and social motivation.

You will have two hours of lectures per week for this module.

10 credits in the Spring Semester.

 
Altruism, Cooperation and Helping 

The course will cover theories and models of altruism, cooperation and helping form the perspective of psychology, economics and evolutionary biology. Among the theories examined will be reputation-based, strong-reciprocity, warm-glow and crowding and altruistic punishment from economics; kin selection, reciprocity, coercion, mutualism, cooperative breeding from biology; and empathy, personality, sexual selection and situational constraints from psychology.

You will consider why people sometimes don't help and actively try to benefit from others and apply these models to anti-social behaviour, and how we cooperate to inflict injury on other groups. It will also examine not just models of helping others, but also why people ask for help. You will finally look at how charities implement some of these principles and if they are successful.

10 credits in the Spring Semester.

 

Or

Social and Developmental specialism

20 compulsory credits:

Developmental Dyslexia

This module explores psychological theories of developmental dyslexia and educational issues pertaining to this pervasive developmental disorder. It examines the cognitive characteristics and educational attainments of pupils with developmental dyslexia and addresses the ways in which individual educational needs might be met at both the classroom and whole school level.

This module should be of interest to you if you have an interest in developmental, cognitive, and/or educational psychology, and are wishing to pursue a career in child psychology, educational psychology, general teaching practice, and/or special needs education.

Some key questions to be considered are:

  • what criteria should be used to diagnose developmental dyslexia?
  • does developmental dyslexia reflect delayed or deviant behaviour?
  • what are the specific educational issues pertaining to the provision of educational policy and practice for pupils with developmental dyslexia?
  • how should pupils with developmental dyslexia be supported in the classroom?

10 compulsory credits in the Spring Semester.

 
Understanding Developmental Disorders

This module explores how psychologists study and understand disorders of cognitive development. The course focuses largely on disorders which include impairments in attention, memory and/or executive function. Disorders covered include attention deficit hyperactivity disorder (ADHD), autism, reading disorders and Down Syndrome. 

10 compulsory credits in the Spring Semester.

 

 

And 30 optional credits from the following:

Cognitive Development and Autism

You will cover modern version of nativist and empiricist theories of cognitive development.

This module will also give you an overview of current theories which have been proposed to explain Autism Spectrum Disorder. It will provide an evaluation of these theories using behavioural, clinical and neurophysiological evidence from a range of domains including drawing and musical skills (savant skills), scientific knowledge, maths, social learning (trust and imitation) and social motivation.

You will have two hours of lectures per week for this module.

10 credits in the Spring Semester.

 
Educational Psychology

An introduction to the contexts in which educational psychologists operate by examining the historical development of the profession within a set of major legislative and policy contexts, such as the drive to increase social inclusion.

The module will concentrate on assessment and intervention work with specific populations such as young people who display challenging behaviour in schools, vulnerable adolescents, and bilingual learners.

You will also examine psychological approaches to group work with teachers and pupils as well as the application of system theory in helping transform aspects of schools and other organisations.

There will be two hours of lectures per week.

10 credits in the Autumn Semester.

 
Forensic and Mental Health

You will receive an introduction to this growing area of psychology, with a focus on criminality. The module will concentrate on offending behaviours, typical categorisation of those who commit crimes or harm themselves, standard interventions for offenders, and the neuroscience of offending.

The module will also cover the current research on specific offending behaviours, and examine the role of the criminal justice system and health service in dealing with individuals who offend.

You’ll have two hours of lectures per week for this module.

10 credits in the Autumn Semester.

 
Clinical Psychology

An introduction to the concepts of clinical psychology and the application of psychology in clinical settings.

The module illustrates how psychological models are developed and how they are applied in developing interventions. You will examine theory and evaluation of interventions for a number of disorders/clinical issues.

During this module you will have two hours of lectures weekly. 

10 credits in the Spring Semester.

 
Altruism, Cooperation and Helping 

The course will cover theories and models of altruism, cooperation and helping form the perspective of psychology, economics and evolutionary biology. Among the theories examined will be reputation-based, strong-reciprocity, warm-glow and crowding and altruistic punishment from economics; kin selection, reciprocity, coercion, mutualism, cooperative breeding from biology; and empathy, personality, sexual selection and situational constraints from psychology.

You will consider why people sometimes don't help and actively try to benefit from others and apply these models to anti-social behaviour, and how we cooperate to inflict injury on other groups. It will also examine not just models of helping others, but also why people ask for help. You will finally look at how charities implement some of these principles and if they are successful.

10 credits in the Spring Semester.

 

Chemistry

Students taking Chemistry must take a total of 40-50 credits from their chosen specialism. 30 compulsory credits and 10-20 optional credits.

Organic and Inorganic Chemistry

30 compulsory credits:

Advanced Laboratory Techniques

To teach advanced experimental techniques in chemistry. To provide experience in the recording, analysis and reporting of physical data. To put into practice methods of accessing, assessing and critically appraising chemical literature. Following initial workshops there will be a focused literature review culminating in a mini research project. Experience in:

  • Experimental design and methodology
  • Using advanced experimental techniques in chemistry
  • The recording, analysis and reporting of physical data
  • The reporting of experimental results in journal style
  • Team working

10 compulsory credits throughout the full year.

 
Organometallic and Asymmetric Synthesis

On this module, students will develop an understanding of the mechanisms, regiocontrol and stereochemical outcome of organic reactions. You will also learn how to to predict the regiochemical and stereochemical outcome of organic reactions; and to use organometallics to create organic structures.

This module will also introduce students to a range of reagents and synthetic methodology, and to describe how it is applied to the synthesis of organic target molecules. 

10 credits in the Autumn semester.

 
Pericyclic Chemistry and Reactive Intermediates

On this module, students will learn:

  • To consolidate and develop concepts of organic reactivity and mechanism, primarily using qualitative frontier molecular orbital theory

  • To illustrate and rationalise molecular rearrangements in organic chemistry

  • To give an appreciation of the generation and use of reactive intermediates in organic chemistry

10 credits in the spring semester.

 

Optional Organic and Inorganic Chemistry modules

And select an additional 10-20 optional credits:

Bioinorganic and Metal Coordination Chemistry

Transition metal chemistry. The chelate effect. The physical methods used to study the electronic structure of transition metal centres. The roles of metalloproteins in dioxygen transport, electron transfer, photosynthesis and dinitrogen fixation. The use of polychelates in the synthesis of small molecule analogues of the active sites of metalloproteins. Supramolecular chemistry involving metal centres, the synthesis and characterisation of supramolecular arrays. Metal organic frameworks and gas storage. Molecular machines containing metal centres.

10 optional credits in the Autum semester.

 
Protein Folding & Biospectroscopy

This module will develop an understanding of protein structure, stability, design and methods of structural analysis. In addition you will understand the protein folding problem and experimental approaches to the analysis of protein folding kinetics and the application of site-directed mutagenesis.

You will also be expected to develop a number of spectroscopic experimental techniques to probe protein structures.

There will be two hours of lectures a week.

10 credits in the Autumn semester.

 
Chemical Biology and Enzymes

On this module, students should gain a good appreciation of the applications for a range of enzymological, chemical and molecular biological techniques to probe cellular processes and catalysis at the forefront in Chemical Biology research.

This module represents a culmination of principles and techniques from a biophysical, molecular, biochemical and genetic perspective.

10 optional credits in the Autumn semester.

 
Catalysis

This module increases the student's knowledge and understanding of 
(a) heterogeneous and homogeneous catalysis 
(b) catalyst promotion and the concept of catalytic cycles.

The physical basis of the structure-property relationships of heterogeneous catalysts is explained and the link between various organo-transition metal complexes and homogenous catalysis is explored. Comparisons between homogeneous and heterogeneous catalysis are highlighted. A review of the 18- and 16- electron rules and fundamental metal-centred bond-forming and bond-breaking reactions is undertaken and applied to several catalytic cycles. The influence of catalyst design in homogeneous catalysts, with respect to choice of metal ion and ligands, is discussed relating to product selectivity, in particular chirality. A qualitative appreciation of scale up for industrial application.

10 optional credits in the Spring semester.

 

Or choose this Chemistry specialism:

Inorganic and Physical Chemistry specialism

30 compulsory credits:

Advanced Laboratory Techniques

To teach advanced experimental techniques in chemistry. To provide experience in the recording, analysis and reporting of physical data. To put into practice methods of accessing, assessing and critically appraising chemical literature. Following initial workshops there will be a focused literature review culminating in a mini research project. Experience in:

  • Experimental design and methodology
  • Using advanced experimental techniques in chemistry
  • The recording, analysis and reporting of physical data
  • The reporting of experimental results in journal style
  • Team working

10 compulsory credits throughout the full year.

 
Chemical Bonding and Reactivity

This module aims to:

  • provide a fundamental understanding of molecular structure and of the requirements for reactivity
  • introduce modern electronic structure theory and demonstrate how it can be applied to determine properties such as molecular structure, spectroscopy and reactivity.

At the end of the module, a student should be able to:
1. Understand the information contained in a simple potential energy contour plot
2. Appreciate the origin of the normal mode separation and the reasons for its breakdown
3. Appreciate the origin of the Born-Oppenheimer approximation and the reasons for its breakdown
4. Appreciate the role of symmetry in spectroscopic selection rules
5. Perform simple calculations of partition functions
6. Appreciate the concepts underlying RRK and Transition State theories and how they overcome limitations in simple collision theory
7. Describe and understand different electronic structure methods including Hartree-Fock theory and density functional theory
8. Understand the electron correlation problem
9. Appreciate the strengths and weaknesses of different electronic structure methods
10. Understand how theoretical methods can be used to model chemical reactions and spectroscopy.

10 optional credits in the Autumn semester.

 
Solids, Interfaces and Surfaces

Solids

Relationship between structure and properties of solids. Structure of Solids: Common structural types, reciprocal lattice, Brillouin zones. Electronic Structure: Sommerfield model, Fermi energy, Femi-Dirac distribution, Electronic conductivity, Band Structure, Nearly free electron model, Tight binding model. Metals, Semi-metals, Semi-conductors, Insulators. Characterization: X-ray spectroscopies, photoelectric effect. Semi-conductors: intrinsic, extrinsic, optical properties, photoconductivity, junctions, devices, LEDs, solar cells.

Interfaces and Surfaces

General introduction. Getting UHV, surface techniques, electron spectrometer, Auger electron spectroscopy. Surface Structure. Miller indices, 2D Bravais nets, relaxation and reconstruction, Wood and matrix notation. X-ray photoelectron spectroscopy, Einstein's equation, chemical shift, Koopmans theorem. Fermi level, work function, contact potential difference, scanning tunnelling microscope. Ultra-violet photoelectron spectroscopy. Adsorption kinetics, accommodation, sticking, Langmuir and precursor state kinetics. Desorption, temperature programmed desorption, reaction mechanisms, Eley-Rideal, Langmuir-Hinshelwood.

10 credits in the spring semester.

 

Optional Inorganic and Physical Chemistry modules

And select an additional 10-20 optional credits:

Bioinorganic and Metal Coordination Chemistry

At the end of this module the student should be able to:

1. Recognise the roles of metalloproteins and metalloenzymes in controlling key biological processes.
2. Understand the chelate effect, and apply the principle to explain the stability and reactivity of polychelate complexes and the properties of the active sites of metalloenzymes.
3. Assess the structure-function relationships that control the reactivity and catalysis achieved by the metal centres involved in dioxygen transport, electron transfer, photosynthesis and nitrogen fixation.
4. Relate the chemical properties of complexes incorporated into supramolecular systems, metal organic frameworks, metalloproteins and metalloenzymes to the electronic structure of the metal centre.
5. Understand the role that transition metal centres can play in the rational design and chemistry of supramolecular assemblies, and metal organic frameworks.
6. Apply the above knowledge and understanding to a range of inorganic complexes relevant in biological and supramolecular chemistry.
7. Develop key written and communication skills

10 optional credits in the Autum semester.

 
Catalysis

This module increases the student's knowledge and understanding of 
(a) heterogeneous and homogeneous catalysis 
(b) catalyst promotion and the concept of catalytic cycles.

The physical basis of the structure-property relationships of heterogeneous catalysts is explained and the link between various organo-transition metal complexes and homogenous catalysis is explored. Comparisons between homogeneous and heterogeneous catalysis are highlighted. A review of the 18- and 16- electron rules and fundamental metal-centred bond-forming and bond-breaking reactions is undertaken and applied to several catalytic cycles. The influence of catalyst design in homogeneous catalysts, with respect to choice of metal ion and ligands, is discussed relating to product selectivity, in particular chirality. A qualitative appreciation of scale up for industrial application.

10 optional credits in the Spring semester.

 
Structure Determination Methods

Various structure determination methods will be presented, covering a selection of spectroscopic and scattering methods. Advanced light and neutron sources will be introduced, moving on to their use in determining the structures of both isolated molecules and of solids (both crystalline and amorphous) and liquids.

10 credits in the Spring semester.

 
Topics in Inorganic Chemistry

This module covers Inorganic Mechanisms and the overarching fundamental principles of Greener and Sustainable Chemistry as applied to processes.

Topics covered for Inorganic Reaction Mechanisms include classification of the types of substitution reactions found in coordination and organometallic chemistry; explanation of how spectroscopic methods can be used to detect organometallic reaction intermediates.

Topics in-scope for discussion on the theme of Greener and Sustainable Chemistry include:

  • the principles of green chemistry
  • scale-up in the chemicals industry with case studies
  • cleaner polymerisation
  • clean extraction
  • oxidation processes including supercritical water

10 credits in the spring semester.

 

Year Four (MSci students only)

You will choose one of your third-year subjects to focus on in the fourth year, spending half your time working on an independent research project aiming to develop the skills needed to pursue a career in research.

All students take 120 credits of modules in the fourth year and each subject has a minimum number of credits listed. Students can take 120 credits from a single subject (where available) or they can use modules from their second subject to make up the difference between the minimum and the required number of credits.

Mathematical Sciences

You must take a minimum of 80 and a maximum of 120 credits from maths throughout the year.

40 compulsory credits:

Mathematics Dissertation

This module consists of a self-directed investigation of a project selected from a list of projects or, subject to prior approval of the School, from elsewhere.

The project will be supervised by a member of staff and will be based on a substantial mathematical problem, an application of mathematics or investigation of an area of mathematics not previously studied by the student. The course includes training in the use of IT resources, the word-processing of mathematics and report writing.

40 compulsory credits throughout the year

 

 

And select a minimum of 40 credits and a maximum of 80 credits from the optional modules:

Advanced Techniques for Differential Equations

The development of techniques for the study of nonlinear differential equations is a major worldwide research activity to which members of the School have made important contributions. This course will cover a number of state-of-the-art methods, namely:

  • use of green function methods in the solution of linear partial differential equations
  • characteristic methods, classification and regularization of nonlinear partial differentiation equations
  • bifurcation theory

These will be illustrated by applications in the biological and physical sciences.

20 credits in the Autumn Semester

 
Quantum Information Science
Description is under review.
 
Financial Mathematics

The first part of the module introduces no-arbitrage pricing principle and financial instruments such as forward and futures contracts, bonds and swaps, and options. The second part of the module considers the pricing and hedging of options and discrete-time discrete-space stochastic processes. The final part of the module focuses on the Black-Scholes formula for pricing European options and also introduces the Wiener process. Ito integrals and stochastic differential equations.

20 credits in the Autumn Semester

 
Scientific Computing and C++

The purpose of this course is to introduce concepts of scientific programming using the object oriented language C++ for applications arising in the mathematical modelling of physical processes. Students taking this module will develop knowledge and understanding of a variety or relevant numerical techniques and how to efficiently implement them in C++.

20 credits in the Autumn Semester

 
Statistical Foundations

In this course the fundamental principles and techniques underlying modern statistical and data analysis will be introduced. The course will cover a 'common core' consisting of statistical concepts and methods, linear models, probability techniques and Markov chains.

You will gain experience of using a statistical package and interpreting its output. The common core material will be covered primarily at the beginning of the semester.

20 credits in the Autumn Semester

 
Classical and Quantum Dynamics

The module introduces and explores methods, concepts and paradigm models for classical and quantum mechanical dynamics. The course explores how classical concepts enter quantum mechanics, and how they can be used to find approximate “semiclassical” solutions.

20 credits in the Spring Semester

 
Topics in Biomedical Mathematics

This module illustrates the applications of advanced techniques of mathematical modelling using ordinary and partial differential equations. A variety of medical and biological topics are treated bringing students close to active fields of mathematical research.

20 credits in the Spring Semester

 
Time Series and Forecasting

This module will provide a general introduction to the analysis of data that arise sequentially in time. You will discuss several commonly-occurring models, including methods for model identification for real-time series data. You will develop techniques for estimating the parameters of a model, assessing its fit and forecasting future values. You will gain experience of using a statistical package and interpreting its output.

20 credits in the Spring Semester

 
Computational Applied Mathematics

This course introduces computational methods for solving problems in applied mathematics. Students taking this course will develop knowledge and understanding to design, justify and implement relevant computational techniques and methodologies.

20 credits in the Spring Semester

 


Psychology

40 compulsory credits 

Dissertation

This module will provide students with: The opportunity to research in depth a topic of their choice, under the direction of a subject specialist. The skills and methodologies required to carry out sustained independent research.

40 credits throughout the year

 

 

40-80 optional credits

Introduction to Matlab Programming 

Problem-based learning to support lectures on neuroimaging topics. Topics covered include an introduction to computer programming with MATLAB, the design and analysis of behavioural experiments, and the analysis of functional MRI data.

10 credits in the Autumn term

 
Psychological Assessment

This module provides students with the knowledge to be able to select, administer, score, interpret, and provide feedback on educational tests of the kind used when assessing individuals with learning difficulties. They will learn about the advantages and disadvantages of different types of assessment and how to make decisions about test selection for assessments. Students will gain an understanding of test theory including the concepts of reliability, validity and the standardization of tests.  The module will provide a skill set that will be useful to students completing their project in which they may have to administer psychometric tests. It will also be useful to students wishing to pursue a career in education or educational psychology.

20 credits in the Autumn term

 
Current Issues in Cognitive Neuroscience 

This module is an opportunity to work in depth on a specific topic in Cognitive Neuroscience. Students explore their chosen topic and its related methodological issues to their own research interests. The topic is based on a seminar provided in the School of Psychology, with approval from the convenor. The module concerns independent study in addition to supervision sessions.

10 credits in the Spring term

 

 

Data Analysis for Neuroimaging 

Topics include more advanced concepts in MATLAB programming and the analysis of functional MRI data.

10 credits in the Spring term

 
Advanced Methods in Psychology 

The module provides an insight into some more advanced or specialised techniques of data collection, organisation and analysis in psychological research (e.g., eye-tracking, EEG, fMRI, TMS, computational modelling, diary methodologies and Workshops Lectures will include implementation of analytical procedures in for example specialised data management and statistical packages and on specialised data gathering equipment and software.

20 credits in the Spring term

 
Childhood Clinical and Behavioural Disorders 

This module will examine:  Conduct disorder – Oppositional Defiant Disorder – Depression – Anxiety – Childhood onset schizophrenia – Therapies for young people – Pharmacological interventions – Comorbidity of mental health problems and developmental disorders

20 credits in the Spring term

 

Chemistry

Students taking Chemistry must take a minimum of 80 and a maximum of 120 credits from this subject.

60 compulsory credits:

Chemistry Research Project

You will be welcomed into one of the research groups within the School of Chemistry to undertake an in-depth research project.

All projects will involve a review of relevant published work and the planning and execution of a research topic under the guidance of two supervisors. Students will present their findings orally and in a written report.

60 compulsory credits throughout the full year.

 

 

And a minimum of 20 credits to a maximum of 60 credits from the following optional modules:

Enterprise for Chemists

Students will learn about the factors that lead to successful commercial innovation and how to take a technical idea and convert it into a successful commercial venture. They are shown routes to market for innovative ideas available from an academic/industrial viewpoint Assessment in SEM 1 will be via group exercise and presentation; teams have 3 weeks to develop the business case for a new innovation as a Dragon’s Den Style Pitch which is given in late November.

Students will also learn about different types of business and how they contribute to the global economy. Some of the basic business skills will be covered (selling, marketing, customer awareness and finance) as well as the aspects which drive innovation and success.

We also give students an understanding of intellectual property, how it is used to create value in the business context. Aspects of IP law are highlighted with reference to different types of IPR including patents, trademarks, copyright, design rights and trade secrets including their everyday application within chemistry using industries.

This course demonstrates utilisation of this IP to give a company a competitive advantage within their market place.

At the end of the course students participate in a one day business exercise led by professionals from a chemicals company that tests all of the above skills in an interesting and realistic approach to commercial problem solving.

10 optional credits throughout the full year.

 
Advanced Physical Chemistry 1

Building on your knowledge from the previous years' modules in inorganic chemistry, you’ll study topics including:

  • electron transfer pathways
  • inorganic chemistry in biological systems
  • the principles of molecular and supramolecular photochemistry
  • applications of inorganic photochemistry
  • photocatalysis

You’ll attend two lectures each week in this module. 

10 optional credits in the Autumn semester.

 
Contemporary Organic Synthesis and the Construction of Bioactive targets

Explore the synthesis of a variety of natural (and unnatural) compounds of relevance to biology and medicine, with reference to the goals and achievements of contemporary organic synthesis through a range of case studies. There is an emphasis on the use of modern synthetic methodology to address problems such as chemoselectivity, regiocontrol, stereoselectivity, atom economy and sustainability.

You will also study the application of new methodology for the rapid, efficient and highly selective construction of a range of target compounds - particularly those that display significant biological activity. There will also be an opportunity to address how a greater understanding of mechanism is important in modern organic chemistry. This module is assessed by a two hour exam.

10 optional credits in the Autumn semster.

 
Inorganic and Materials Chemistry A

In this module you will explore inorganic photochemistry, electron transport pathways, molecular and supramolecular photochemistry, and artificial photosynthesis together with the principles that underpin green chemistry.

You will attend two lectures per week in this module.

10 optional credits in the Autumn semester.

 
Inorganic and Materials Chemistry B

This module focuses on Inorganic Photochemistry, Molecular Machines and the applications of photochemistry tochemical manufacture. 

10 optional credits in the Autumn semester.

 
Advanced Biocatalysis, Biosynthesis and Chemical Biology

Advanced Chemical Biology:

To introduce concepts of chemical genetics and including activity-based protein profiling, non-natural amino acid incorporation, bio-orthogonal reactivity and the use of bump-and-hole strategies, applied to various challenges such as finding kinase/target pairs.

Biocatalysis

To introduce enzyme engineering and the synthetic utility of designer biocatalysts, especially highlighting chemo-enzymatic approaches toward chiral commodity molecules (e.g. pharmaceuticals) and their precursors.

Biosynthesis

To introduce the biosynthetic pathways and enzyme catalysed reactions leading natural products polyketides, terpenes, fatty acids and non-ribosomal peptides.

10 optional credits in the Spring semster.

 
Advanced Physical Chemistry 2

Building on your knowledge from the previous years' modules in inorganic chemistry, you’ll study topics including:

  • electron transfer pathways
  • inorganic chemistry in biological systems
  • the principles of molecular and supramolecular photochemistry
  • applications of inorganic photochemistry
  • photocatalysis

You’ll attend two lectures each week in this module. 

10 optional credits in the Spring semester.

 
Medicines from Nature/Pharmaceutical Process Chemistry

This module consists of two separately taught topics in advanced organic chemistry: Medicines from Nature (Dr Francesca Paridisi ) and Pharmaceutical Process Chemistry (Dr Andrew Nortcliffe).

Medicines from Nature

To provide an appreciation of the importance of natural products from plants, micro-organisms and marine life in providing leads for today’s drugs and medicines in the fight against cancer, blood pressure, pain, inflammation, bacterial infection, AIDS, Alzheimer’s, Parkinson’s and other diseases. How the discovery of biological activity in a natural product can be turned into a useful medicine. The topic will include descriptions of the biosynthesis and total synthesis of natural products.

Pharmaceutical Process Chemistry

This topic explores the role of the chemist in developing a viable commercial synthesis of medicines starting from a small scale. After a description of the place process chemistry takes within drug discovery as a whole, the topic will cover the following: Selection of chemical routes to medicines and assessment of their worth; Safety; Reagent selection; synthesis of chirally pure compounds; How reactions and reaction workups may be optimised.

10 optional credits in the Spring semester.

 
Molecular Interactions and Supramolecular Assembly

In this module you will learn about the importance of intermolecular forces, across a wide cross-section of subject areas from biology through to supramolecular chemical systems.

You will study molecular organisation, assembly and recognition in biological and supramolecular systems.

In addition to appreciating the rich chemistry underlying self-assembling systems, you'll learn about the phenomena that impact on the properties of materials and important interactions in biology. 

10 optional credits in the Spring semester.

 
Nucleic Acids and Bioorganic Mechanism

During this module you will learn to understand in depth the structure, chemistry and molecular recognition of nucleic acids and their reactivity towards mutagens, carcinogens and ionising radiation and anti-tumour drugs. You will appreciate the plasticity and dynamics of the DNA duple helix through base motions that underpin its function.

The bacterial replisome will be used as the prime example to highlight the problems associated with DNA replication and the significance of telomeres will be discussed. Alongside this you will develop an understanding of the chemical reactivity of coenzymes and how these add significantly to the functionality of the 20 amino acids found in proteins. 

10 optional credits in the Spring semester.

 

Disclaimer
This online prospectus has been drafted in advance of the academic year to which it applies. Every effort has been made to ensure that the information is accurate at the time of publishing, but changes (for example to course content) are likely to occur given the interval between publishing and commencement of the course. It is therefore very important to check this website for any updates before you apply for the course where there has been an interval between you reading this website and applying.

Natural Sciences

School of Mathematical Sciences, University of Nottingham
University Park
NG7 2RD

Tel: +44 (0) 115 823 2376
Fax: +44 (0) 115 951 3555
Email: naturalsciences@nottingham.ac.uk