logo

Controlled disorder — scientists find way to form random molecular patterns

   
   
Rhombus tiling molecules
30 Nov 2011 12:04:42.563

PA 371/11

Scientists at The University of Nottingham have discovered a way to control how tiny flat molecules fit together in a seemingly random pattern.

The researchers have been studying molecules which resemble tiny rhombus/diamond shaped tiles, with a side length of around 2 nanometres — 2 billionths of a metre.

The fundamental research, published in the prestigious journal Nature Chemistry, has shown that they can prompt the ‘tiles’ to form a range of random patterns by adjusting the conditions in which the experiment is conducted.

Click here for full story

 Lead author Dr Andrew Stannard, in the University’s School of Physics and Astronomy said: “To construct some sort of nanoscale device comprised of molecules, one needs to understand how those molecules will interact with one another.

“Typically, a useful device would be one in which the molecules arrange themselves in some perfectly ordered, regular manner. What we have studied here is almost the complete opposite — we have purposely tried to make the assemblies of molecules as random as possible.

“However, if we can gain a complete understanding of how randomness and disorder arises in these types of molecular structures, we can better understand how to eradicate that disorder when we want to create something functional.”

Tilings of various geometrical shapes have interested scientists, mathematicians, and artists for centuries, and a wide range of tilings can be seen adorning many medieval architectural structures, as well as for practical purposes in our more modern kitchens and bathrooms.

But tile effects occur naturally within nature and science too and tilings of rhombuses are of particular interest to physicists, mathematicians and computer scientists because of their ability to form both periodic (regular, repeating patterns) and nonperiodic (random) patterns.

The Nottingham scientists have demonstrated for the first time that the generation of molecular rhombus tilings with varying degrees of orderliness — some very random, some very ordered — can be achieved by varying the conditions of the experiment in which they are created.

The achievement is all the more remarkable considering the range of experimental conditions in which this can be achieved is extremely narrow, requiring the scientists to achieve a delicate balance between energy and entropy — the subjects of the first and second laws of thermodynamics, some of the fundamental laws of physics and, in the case of entropy, are linked to order and disorder within a thermodynamic system.

— Ends —

Notes to editors: The University of Nottingham, described by The Sunday Times University Guide 2011 as ‘the embodiment of the modern international university’, has award-winning campuses in the United Kingdom, China and Malaysia. It is ranked in the UK's Top 10 and the World's Top 75 universities by the Shanghai Jiao Tong (SJTU) and the QS World University Rankings. It was named ‘Europe’s greenest university’ in the UI GreenMetric World University Ranking, a league table of the world’s most environmentally-friendly higher education institutions, which ranked Nottingham second in the world overall.

The University is committed to providing a truly international education for its 40,000 students, producing world-leading research and benefiting the communities around its campuses in the UK and Asia. Impact: The Nottingham Campaign, its biggest ever fund-raising campaign, will deliver the University’s vision to change lives, tackle global issues and shape the future. For more details, visit: http://www.nottingham.ac.uk/impactcampaign

More than 90 per cent of research at The University of Nottingham is of international quality, according to the most recent Research Assessment Exercise, with almost 60 per cent of all research defined as ‘world-leading’ or ‘internationally excellent’. Research Fortnight analysis of RAE 2008 ranked the University 7th in the UK by research power. The University’s vision is to be recognised around the world for its signature contributions, especially in global food security, energy & sustainability, and health.

More news from the University at: http://www.nottingham.ac.uk/news

Story credits

More information is available from Dr Andrew Stannard on +44 (0)115 951 4868, andrew.stannard@nottingham.ac.uk
Emma Thorne

Emma Thorne - Media Relations Manager

Email: emma.thorne@nottingham.ac.uk Phone: +44 (0)115 951 5793 Location: University Park
 

Additional resources

No additional resources for this article

Related articles

News and Media - Marketing, Communications and Recruitment

The University of Nottingham
C Floor, Pope Building (Room C4)
University Park
Nottingham, NG7 2RD

telephone: +44 (0) 115 951 5765
email: communications@nottingham.ac.uk