A new bright light source to speed up cancer diagnosis

   
   

cancer-diagnosis-445 

26 Feb 2015 10:57:25.673

PA 31/15

A newly discovered mid-infrared (MIR) light made from a special type of optical fibre, will lead to new types of cancer diagnosis, such as in the rapid screening of skin on your body while you wait, and to assist in the careful removal of diseased tissue during surgery.

The finding has been achieved by scientists at The University of Nottingham in collaboration with DTU (Technical University of Denmark).

The Mid-Infrared Photonics team at Nottingham is led by Professor Angela Seddon, from the George Green Institute for Electromagnetics Research which is headed by Professor Trevor Benson at Nottingham.

Click here for full story

The Nottingham team has achieved a world record by producing the widest recorded intensity of light ever produced by a mid-infrared optical fibre. In a new paper published in Nature Photonics,Professor Seddon and Professor Benson show that the new portable fibre laser sends out a bright mid-infrared light rainbow beam covering the widest range of infrared light wavelengths to date for molecular detection of cancer without the need for biopsy sampling. The light is the so-called mid-infrared supercontinuum.

Early detection is vital

Most types of cancer have four stages. Stage one, the cancer is contained within the organ it started, stage two usually means the cancer hasn’t spread but the tumour is larger, stage three the cancer is usually larger and stage four, the cancer has undergone metastatic spread (the transfer of cancer from one area of the body to another).

Professor Seddon said: “In the UK, recent figures have shown that about four out of 10 patients are diagnosed with cancer in stages three or four. This late diagnosis impacts on treatment and five-year survival rates — meaning early detection is vital in order to increase survival rates.

“In our paper, we propose using MIR light for early cancer diagnosis using MIR medical imaging, sensing using endoscopy and examining the skin. This form of cancer screening is called an ‘optical biopsy’ and is both non-invasive and cost-effective and could determine the existence of cancer at a time when remedial action can be taken.”

Whilst biomedical spectroscopy already distinguishes cancerous tissue from normal tissue using cut out biopsy samples, examination of patients without sampling has previously been prevented by the lack of portable, bright, broadband, mid-infrared photonic sources.

Impacting on different sectors

Now, thanks to this discovery, not only is there the potential for early screening of cancer, but the technology will also impact on many sectors including the stand-off detection of explosives, process-control in agriculture, the oil industry, manufacturing and improved monitoring of the environment and energy efficiency.

The special fibre chemistry, design and its processing method were conceived by Professor Seddon. Fibre fabrication was led in the laboratory by Senior Research Officer Dr David Furniss with Drs Nabil Abdel-Moneim and Zhuoqi Tang in the Mid-Infrared Photonics team using a specialist fibre drawing tower.

The Mid-Infrared Photonics team is currently engaged in the development of the first mid-infrared fibre narrow-band laser. The achievement of this will lead to compact modular mid-infrared photonic sources — both narrow-band and wide-band. Narrow-band sources will lead to new options for fibre laser medical surgery and coherent mid-infrared photonic imaging of tissue.

The Nottingham team has been awarded €1m from the EU to carry out this research within the €7m MINERVA Project — MId-to NEaR infrared spectroscopy for improVed medical diAgnostics. Partners in the research include NKT Photonics and Gooch and Housego (headquartered in England). The success to date may be attributed to the team approach to research and the ability to work across the boundaries between the disciplines of engineering, chemistry, physics and medicine within the academic and business sectors.

To view the whole paper visit:

http://www.nature.com/nphoton/journal/vaop/ncurrent/full/nphoton.2014.213.html .

— Ends —

Our academics can now be interviewed for broadcast via our Media Hub, which offers a Globelynx fixed camera and ISDN line facilities at University Park campus. For further information please contact a member of the Communications team on +44 (0)115 951 5798, email mediahub@nottingham.ac.uk or see the Globelynx website for how to register for this service.

For up to the minute media alerts, follow us on Twitter

Notes to editors: The University of Nottingham has 43,000 students and is ‘the nearest Britain has to a truly global university, with campuses in China and Malaysia modelled on a headquarters that is among the most attractive in Britain’ (Times Good University Guide 2014). It is also one of the most popular universities in the UK among graduate employers, in the top 10 for student experience according to the Times Higher Education and winner of ‘Research Project of the Year’ at the THE Awards 2014. It is ranked in the world’s top one per cent of universities by the QS World University Rankings, and 8th in the UK by research power according to REF 2014.

The University of Nottingham in Malaysia (UNMC) is holding events throughout 2015 to celebrate 15 years as a pioneer of transnational education. Based in Semenyih, UMNC was established as the UK's first overseas campus in Malaysia and one of the first world-wide.

Impact: The Nottingham Campaign, its biggest-ever fundraising campaign, is delivering the University’s vision to change lives, tackle global issues and shape the future. More news…

Story credits

More information is available from Professor Angela Seddon,Head of the Mid-Infrared Photonics Group at The University of Nottinghamon +44 (0)115 846 6755, angela.seddon@nottingham.ac.uk
  CharlotteAnscombe

Charlotte Anscombe - Media Relations & Campaign Manager

Email: charlotte.anscombe@nottingham.ac.uk  Phone:+44 (0)115 74 84 417 Location: University Park

Additional resources

No additional resources for this article

Related articles

Study sheds new light on aggressive cancer in children

Published Date
Tuesday 3rd February 2015

Cell manipulation could lead to the better treatment of disease

Published Date
Friday 27th February 2015

Speeding up cancer diagnosis during surgery

Published Date
Tuesday 17th September 2013

Taking on the UK's most deadly cancer

Published Date
Tuesday 9th July 2013

Media Relations - External Relations

The University of Nottingham
C Floor, Pope Building (Room C4)
University Park
Nottingham, NG7 2RD

telephone: +44 (0) 115 951 5798
email: communications@nottingham.ac.uk