Nottingham researchers show novel technique that can 'taste' DNA

   
   
minION press release
25 Jul 2016 16:00:00.000

 

Scientists at The University of Nottingham have demonstrated for the first time that it is possible to selectively sequence fragments of DNA in real time, greatly reducing the time needed to analyse biological samples. 

A paper published today in the academic journal Nature Methods describes a novel technique for highly selective DNA sequencing, called ‘Read Until’.  The method, used with real-time nanopore sequencing, enables the user to analyse only DNA strands that contain pre-determined signatures of interest.

Dr Matt Loose, of the Cell and Developmental Biology Research Group in the University’s School of Life Sciences, has been working with the MinION, a new portable DNA sequencing technology produced by biotech company Oxford Nanopore Technologies. All sequencing was carried out at The University of Nottingham Next Generation Sequencing Facility, DeepSeq.

Click here for full story

“This is the first time that direct selection of specific DNA molecules has been shown on any device,” said Dr Loose. “We hope that it will enable many future novel applications, especially for portable sequencing. This makes sequencing as efficient as possible and will provide a viable, informatics based alternative to traditional wet lab enrichment techniques. The application of this approach to a wide number of problems from pathogen detection to sequencing targeted regions of the human genome is now within reach.”

DNA 'tasting'

The pocket-sized MinION device – the same technology which NASA recently sent to the International Space Station in an effort to investigate whether DNA sequencing is possible in microgravity - employs tiny molecular pores in a membrane that ‘sense’ the sequence of DNA fragments passing through these nanopores, producing minute fluctuations in a current trace. These current traces, termed ‘squiggles’ then need to be converted to DNA bases using base caller software, often located in the cloud. The University of Nottingham team used signal processing techniques to map these squiggles to reference sequences, by passing this step.

In the paper, the Nottingham team go further, showing that this squiggle matching technique can be performed at a rate that enables decisions to be made about the fragment of DNA that is being sequenced before it has completely passed through the nanopore. Depending on the sequence, individual nanopores within the MinION can then be instructed to continue sequencing or to eject the current DNA fragment and start sequencing another. The Nottingham team show that this ‘real-time selective sequencing’, or as some have called it ‘DNA tasting’, can reduce the time needed to sequence key DNA fragments or enable the analysis of pathogen samples where there is host and other DNA present in the sample.

The Read Until method/technique was developed by applying dynamic time warping to match short query current traces to references, demonstrating selection of specific regions of small genomes, individual amplicons from a group of targets, or normalisation of amplicons in a set.

The ongoing development of this work is funded by the Biotechnology and Biological Sciences Research Council (BBSRC).

— Ends —

Our academics can now be interviewed for broadcast via our Media Hub, which offers a Globelynx fixed camera and ISDN line facilities at University Park campus. For further information please contact a member of the Communications team on +44 (0)115 951 5798, email mediahub@nottingham.ac.uk or see the Globelynx website for how to register for this service.

For up to the minute media alerts, follow us on Twitter

Notes to editors: The University of Nottingham has 43,000 students and is ‘the nearest Britain has to a truly global university, with a “distinct” approach to internationalisation, which rests on those full-scale campuses in China and Malaysia, as well as a large presence in its home city.’ (Times Good University Guide 2016). It is also one of the most popular universities in the UK among graduate employers and was named University of the Year for Graduate Employment in the 2017 The Times and The Sunday Times Good University Guide. It is ranked in the world’s top 75 by the QS World University Rankings 2015/16, and 8th in the UK for research power according to the Research Excellence Framework 2014. It has been voted the world’s greenest campus for four years running, according to Greenmetrics Ranking of World Universities.

Impact: The Nottingham Campaign, its biggest-ever fundraising campaign, is delivering the University’s vision to change lives, tackle global issues and shape the future. More news…

 
Oxford Nanopore Technologies - https://nanoporetech.com

Story credits

More information is available from Dr Matt Loose in the School of Life Sciences, University of Nottingham on +44 (0)115 823 0358, matt.loose@nottingham.ac.uk

Emma Thorne Emma Thorne - Media Relations Manager

Email: emma.thorne@nottingham.ac.uk Phone: +44 (0)115 951 5793 Location: University Park

Additional resources

No additional resources for this article

Media Relations - External Relations

The University of Nottingham
C Floor, Pope Building (Room C4)
University Park
Nottingham, NG7 2RD

telephone: +44 (0) 115 951 5798
email: communications@nottingham.ac.uk