Major breakthrough in new MRI scan technology for lung disease

   
   
lung scan pr
10 Mar 2016 09:45:00.000

PA 54/16

New scanning technology which will give a much clearer picture of lung disease has taken a major step forward thanks to scientists at The University of Nottingham.

The experts at the Sir Peter Mansfield Imaging Centre have developed a process using specially treated krypton gas as an inhalable contrast agent to make the spaces inside the lungs show up on an Magnetic resonance imaging (MRI) scan. It’s hoped the new process will eventually allow doctors to virtually see inside the lungs of patients.

Traditional magnetic resonance imaging uses hydrogen protons in the body as molecular targets to give a picture of tissue but this does not give a detailed picture of the lungs because they are full of air. Recent technological developments have led to a novel imaging methodology called Inhaled Hyperpolarised Gas MRI that uses lasers to ‘hyperpolarise’ a noble (inert) gas which aligns (polarises) the nuclei of the gas so it shows up on an MRI scan.

Click here for full story

The work will make 3D imaging using ‘atomic spies’ like helium, xenon, or krypton possible in a single breath hold by the patient. Nottingham has pioneered hyperpolarized krypton MRI and is currently advancing this technology towards the clinical approval processes.

Hyperpolarised MRI research has been trying to overcome a problem with these noble gases retaining their hyperpolarised state for long enough for the gas to be inhaled, held in the lungs and scanned. Now in a paper published in the Proceedings of the National Academy of Sciences, the Nottingham team has developed a new technique to generate hyperpolarised krypton gas at high purity, a step that will significantly facilitate the use of this new contrast agent for pulmonary MRI.

Chair in Translational Imaging at the Sir Peter Mansfield Imaging Centre, Professor Thomas Meersmann, said: “It is particularly demanding to retain the hyperpolarized state of krypton during preparation of this contrast agent. We have solved a problem by using a process that is usually associated with clean energy related sciences. It’s called catalytic hydrogen combustion. To hyperpolarise the krypton-83 gas we diluted it in molecular hydrogen gas for the laser pumping process. After successful laser treatment the hydrogen gas is mixed with molecular oxygen and literally exploded it away in a safe and controlled fashion through a catalysed combustion reaction.

“Remarkably, the hyperpolarized state of krypton-83 ‘survives’ the combustion event. Water vapour, the sole product of the ‘clean’ hydrogen reaction, is easily removed through condensation, leaving behind the purified laser-polarized krypton-83 gas diluted only by small remaining quantities of harmless water vapour. This development significantly improves the potential usefulness of laser-pumped krypton-83 as MRI contrast agent for clinical applications.”

This new technique can also be used to hyperpolarise another useful noble gas, xenon-129, and may lead to a cheaper and easier production of this contrast agent.

As part of a recent Medical Research Council funding award, hyperpolarised krypton-83 is currently being developed for whole body MRI at high magnetic field strength in the Sir Peter Mansfield Imaging Centre’s large 7 Tesla scanner. Studies will be carried out first on healthy volunteers before progressing to patient trials at a later phase.

— Ends —

Our academics can now be interviewed for broadcast via our Media Hub, which offers a Globelynx fixed camera and ISDN line facilities at University Park campus. For further information please contact a member of the Communications team on +44 (0)115 951 5798, email mediahub@nottingham.ac.uk or see the Globelynx website for how to register for this service.

For up to the minute media alerts, follow us on Twitter

Notes to editors: The University of Nottingham has 43,000 students and is ‘the nearest Britain has to a truly global university, with a “distinct” approach to internationalisation, which rests on those full-scale campuses in China and Malaysia, as well as a large presence in its home city.’ (Times Good University Guide 2016). It is also one of the most popular universities in the UK among graduate employers and the winner of ‘Outstanding Support for Early Career Researchers’ at the Times Higher Education Awards 2015. It is ranked in the world’s top 75 by the QS World University Rankings 2015/16, and 8th in the UK by research power according to the Research Excellence Framework 2014. It has been voted the world’s greenest campus for three years running, according to Greenmetrics Ranking of World Universities.

Impact: The Nottingham Campaign, its biggest-ever fundraising campaign, is delivering the University’s vision to change lives, tackle global issues and shape the future. More news…

Story credits

More information is available from Professor Thomas Meersmann in the Sir Peter Mansfield Imaging Centre, University of Nottingham on +44 (0)115 951 5166, Thomas.meersmann@nottingham.ac.uk
EmmaRayner2

Emma Rayner - Media Relations Manager

Email: emma.rayner@nottingham.ac.uk Phone: +44 (0)115 951 5793 Location: University Park

Additional resources

No additional resources for this article

Related articles

How 'salt' MRI scans could give a clearer picture of disease

Published Date
Thursday 17th March 2016

Launch of UK's first Centre for Healthcare Technologies

Published Date
Tuesday 1st March 2016

Creating the new national tissue directory

Published Date
Tuesday 16th February 2016

Cellulitis sufferers wanted for a new research survey

Published Date
Monday 11th April 2016

Tell-tail MRI image diagnosis for Parkinson's disease

Published Date
Tuesday 29th April 2014

A new scan for lung diseases

Published Date
Monday 12th October 2009

News and Media - Marketing, Communications and Recruitment

The University of Nottingham
C Floor, Pope Building (Room C4)
University Park
Nottingham, NG7 2RD

telephone: +44 (0) 115 951 5765
email: communications@nottingham.ac.uk