Pages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 12826 result(s) returned

Stage 7: Option testing (how well will each work?)

While the identified objectives and constraints have been referred to constantly during the development stage, the testing stage of the approach is a more formal analysis of each option. Its objective is to determine whether:

  • the option will meet the operational objectives

  • it is technically feasible

  • it is organisationally feasible

  • it will meet the financial objectives.

Author(s): No creator set

License information
Related content

Licensed under a Creative Commons Attribution - NonCommercial-ShareAlike 2.0 Licence - see http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ - Original copyright The Open University

Stage 6: Developing the options (what would the options be like?)

The objective here is to develop the routes to objectives generated in Stage 4 to the position where they could be implemented if the decision to go ahead were given. This involves doing sufficient work on each option for technical and other details to be defined, and for costs and benefits to be assessed, and for a sound decision to be taken, while at the same time minimising the time and resources devoted to the task.

Stage 5: Formulating measures of performance (how will we know when we have arrived?)

The hard systems approach emphasises the need to have measurable means of assessing the efficacy of any potential solution or design, but recognizes that this may not always be possible.


Author(s): No creator set

License information
Related content

Licensed under a Creative Commons Attribution - NonCommercial-ShareAlike 2.0 Licence - see http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ - Original copyright The Open University

Stage 4: Generation of routes to objectives (how could we get there?)

This stage explores the different ways of achieving the defined objectives. It is the most imaginative and free-thinking stage of the approach. The idea is initially to generate as many ideas as possible, then to whittle the list down to two or three ‘definite possibilities’ that can be carried further in the development stage.

Stage 3: Identification of objectives and constraints (where would we like to be?)

This stage forces the project team to make explicit the objectives and constraints associated with the problem or opportunity. This is valuable for several reasons.

  • It forces everyone concerned to clarify what they hope to achieve.

  • The need to agree objectives and constraints can bring into the open disagreements that otherwise might emerge only at a later stage of the approach.

  • The process of defining, elaborating an
    Author(s): No creator set

    License information
    Related content

    Licensed under a Creative Commons Attribution - NonCommercial-ShareAlike 2.0 Licence - see http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ - Original copyright The Open University

Stage 2: Analysis of the existing situation (where are we now?)

Having defined and agreed on the problem, it is necessary to decide on the system in which you consider it plays a part. In practice the two stages are closely linked and the analysis of the existing system nearly always means a redefinition or refinement of the problem or opportunity. Identifying and defining the problem and the system or systems that relate to it are critical for the success of subsequent analysis.

Stage 1: Problem definition (what is the problem?)

The aim of the first stage is to identify and describe the problem or opportunity. While each stage depends on the success of the previous stage, it is the initial stages of a project that set the direction for the work as a whole. For this reason a clear definition and firm agreement on the problem or opportunity are essential.

Problems and opportunities are like two sides of a coin: one of them can always be formulated in terms of the other. The best way to distinguish between them is
Author(s): No creator set

License information
Related content

Licensed under a Creative Commons Attribution - NonCommercial-ShareAlike 2.0 Licence - see http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ - Original copyright The Open University

3.8 Systems methodologies for managing change: hard systems approach

The stages of the hard systems approach are illustrated in Figure 34 and simplified in Figure 35. The model shown in these figures was developed by the Open Systems Group from earlier work by de Neufville and Stafford (1974). The stages ‘problem/opportunity’ and ‘implementation’ are shown in solid boxes because they occur in the real wor
Author(s): No creator set

License information
Related content

Licensed under a Creative Commons Attribution - NonCommercial-ShareAlike 2.0 Licence - see http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ - Original copyright The Open University

3.7 Systems methodologies for managing change

The use of systems concepts and models forms part of a process of investigation that is often described in the literature of systems, design and decision-making as a ‘methodology’, where a methodology is a process of enquiry, not a method to produce a predetermined result.

A systems methodology has the following characteristics.

  • It is, or it provides, the means for the investigator to draw up a plan for studying a situation. This encour
    Author(s): No creator set

    License information
    Related content

    Licensed under a Creative Commons Attribution - NonCommercial-ShareAlike 2.0 Licence - see http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ - Original copyright The Open University

3.6 Systems concepts: dynamic behaviour: control

A system does not usually behave in a random manner – its actions are governed in some way. This can be achieved by using the control models, either singly or in combination, shown in Figure 32(a) and (b). The feedback (or closed loop) control model in Figure 32(a) works as follows:

  • a feature of the output from
    Author(s): No creator set

    License information
    Related content

    Licensed under a Creative Commons Attribution - NonCommercial-ShareAlike 2.0 Licence - see http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ - Original copyright The Open University

3.5 Systems concepts: dynamic behaviour: input-transformation-output

Utilitarian systems, as previously discussed, are the means we use to transform resource inputs into useful goods and services. Any system can be divided into a set of input-transformation-output blocks. These are usually represented as in Figure 31. This way of looking at systems can be used as an analytical and design tool.


Author(s): No creator set

License information
Related content

Licensed under a Creative Commons Attribution - NonCommercial-ShareAlike 2.0 Licence - see http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ - Original copyright The Open University

3.4 Systems concepts: structure

As suggested earlier, the structure of a system is its functional or physical arrangement; the term that is often used in systems engineering is ‘architecture’. The architecture of a system can be deconstructed to reveal its constituent elements. I suggested in Section 1 that an existing knowledge base has an important bearing on the way in which a change problem is perceived. The way that this is conceived by one armaments system integrator is illustrated in Author(s): No creator set

3.3 System concepts: holism

One of the distinguishing features of the systems approach is its attempt to be holistic – to include all the elements in the picture at each level at which the system operates. The premature exclusion of important elements can be dangerous and can lead to, for example:

  • a purchasing manager being so keen to drive down raw material and component costs that he or she causes quality and production problems in construction of the system


  • Author(s): No creator set

    License information
    Related content

    Licensed under a Creative Commons Attribution - NonCommercial-ShareAlike 2.0 Licence - see http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ - Original copyright The Open University

3.2 Systems concepts: system

The word ‘system’ is from the Greek word meaning a complex, organised whole. It has been used in this sense throughout history, and the Oxford English Dictionary records examples of usage dating from the early eighteenth century. Figure 24 shows a simplified diagram of a typical system. It indicates the boundary of the system,
Author(s): No creator set

License information
Related content

Licensed under a Creative Commons Attribution - NonCommercial-ShareAlike 2.0 Licence - see http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ - Original copyright The Open University

3.1 Introduction

As you would expect, since this unit deals with systems engineering, it embodies the principles and methods associated with a systems perspective. So it is important that you understand systems and the systems perspective at the beginning of the unit.

To have engineered a system successfully, all its features – the technology, control systems, people and related aspects of the physical environment – have to contribute to the achievement of its objectives. In other words, it h
Author(s): No creator set

License information
Related content

Licensed under a Creative Commons Attribution - NonCommercial-ShareAlike 2.0 Licence - see http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ - Original copyright The Open University

2.3 Summary and conclusions

This topic has addressed the question ‘What is modern engineering?’ The conclusion must be drawn that, until recently, engineers were content with fairly simplistic definitions of their profession, thinking that it consisted of little other than craft skills or practical experience grafted on to a knowledge of mathematics and appropriate natural sciences. It has been methodologically naive, and definitions of the processes of engineering either lack detail (Author(s): No creator set

2.2 A modern view

Modern attempts to define engineering recognise the importance of the resources identified by Sage, and that the subject can be divided into two components: engineering knowledge – the ‘know-what’, and engineering process – the ‘know-how’. Engineering knowledge is:

[…] the growing body of facts, experience and skills in science, engineering and technology disciplines; coupled to an unde
Author(s): No creator set

License information
Related content

Licensed under a Creative Commons Attribution - NonCommercial-ShareAlike 2.0 Licence - see http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ - Original copyright The Open University

2.1 The development of engineering

Engineering is one important component of systems engineering. In this topic I will examine the development of engineering before presenting a modern view of the subject. Section 3 will then pick up and discuss the idea of systems engineering.

William Shipley, a drawing master from Northampton, was instrumental in founding ‘the Society Instituted at London for the promotion of Arts, Manufactures and Commerce’ in 1754. This later became the Royal Society for the encouragement of
Author(s): No creator set

License information
Related content

Licensed under a Creative Commons Attribution - NonCommercial-ShareAlike 2.0 Licence - see http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ - Original copyright The Open University

1.9 Increasing complication, complexity and risk: summary

The three levels of change problem, simplicity, complication and complexity, can be associated with craft, engineering and systems engineering knowledge. The three categories of change problem represent different levels of uncertainty of what needs to be done and how to do it. The greater uncertainty brings increased risk. Although we tend to be risk averse we will take on greater risk if the returns are commensurate with doing so.

Human experience can be divided into three worlds. The
Author(s): No creator set

License information
Related content

Licensed under a Creative Commons Attribution - NonCommercial-ShareAlike 2.0 Licence - see http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ - Original copyright The Open University

1.8 Increasing complication, complexity and risk: are systems becoming more complex?

Figure 17 shows the evolution of two commonly encountered applications of systems – for personal transport and for the reproduction of recorded music. In both cases the degree of complexity of the systems application has increased over time. One of the main reasons for this is technology push. The importance of technology can be related to the stages of the product life cycle shown in Author(s): No creator set

Pages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642