Cell Phones in Schools
This seven minute video is an interview with two educators on how cell phones can be used in the classroom. Also talks about various other uses such as blogs, one cell classrooms, and using texting.
Author(s): No creator set

License information
Related content

ISS Update - March 30, 2011
The International Space Station video update for March 30, 2011.
Author(s): No creator set

License information
Related content

Russia's fossil fuel bonanza
Russia, a major global oil and gas producer, is set to benefit from high demand for fossil fuels after the turmoil in Libya and nuclear disaster in Japan but some analysts warn the future may not be as bright as it looks.
Author(s): No creator set

License information
Related content

UK Barclays mulls HQ options
Barclays PLC has declined to comment on reports it's considering moving its headquarters out of London as the cost of holding more capital threatens to make the UK capital less attractive.
Author(s): No creator set

License information
Related content

Blast kills at least 12 in Pakistan
A suspected suicide bomber blows himself up near an Islamist party gathering in northwestern Pakistan, killing at least 12 people. Deborah Lutterbeck reports.
Author(s): No creator set

License information
Related content

Obama vows to curb oil dependence
Summary of business headlines: Obama vows to cut U.S. oil imports by a third; Civil war hits Libyans in their pocketbooks as fear spreads; U.S. labor market continues recovery in March; Stocks rally in U.S. and Europe, Qihoo more than doubles in debut.
Author(s): No creator set

License information
Related content

How a Hybrid Works
In Lesson 4, students conclude the Research and Revise step of the Legacy Cycle, as they investigate different forms of hybrid engines as well as briefly conclude a look at the different forms of potential energy.
Author(s): VU Bioengineering RET Program,

License information
Related content

Copyright 2010 - VU Bioengineering RET Program, School of Engineering, Vanderbilt University,http://www.teachengineering.org/policy_ipp.php

Club Function
Students learn the definition of a function by splitting into two groups, zebras and rhinoceroses. They are handed cards (either a zebra or a rhinoceros) and group together according to the rules of the club function. The students freeze in their groups after about two minutes, and if they are not following the rules of the club function, then they are not allowed into the club.
Author(s): VU Bioengineering RET Program, School of Engineeri

License information
Related content

Copyright 2011 - VU Bioengineering RET Program, School of Engineering, TeachEngineering,http://www.teachengineering.org/policy_ipp.php

The Challenge Question
This lesson introduces the “Walk the Line” Challenge question. Students are asked to journal responses to the question and brainstorm what information they will need to answer the question. The ideas are shared with the class (or in pairs and then to the class, if class size is large). Students then read an interview with an engineer to gain a professional perspective on linear data sets and best-fit lines. Students brainstorm any additional ideas and add them to the list they produced alrea
Author(s): VU Bioengineering RET Program, School of Engineeri

License information
Related content

Copyright 2011 - VU Bioengineering RET Program, School of Engineering, Vanderbilt University,http://www.teachengineering.org/policy_ipp.php

Bernoulli’s Principle
Bernoulli’s principle relates the pressure of a fluid to its elevation and its speed. Bernoulli’s equation can be used to approximate these parameters in water, air or any fluid that has very low viscosity. Students learn about the relationships between the components of the Bernoulli equation through real-life engineering examples and practice problems.
Author(s): Integrated Teaching and Learning Program and Labor

License information
Related content

Copyright 2011 - Integrated Teaching and Learning Program and Laboratory, College of Engineering, University of Colorado at Boulder,http://www.teachengineering.org/policy_ipp.php

Swim to and from the Sea!
Students are introduced to the basic biology behind Pacific salmon migration and the many engineered Columbia River dam structures that aid in their passage through the river’s hydroelectric dams. Students apply what they learn about the salmon life cycle as they think of devices and modifications that might be implemented at dams to aid in the natural cycle of fish migration, and as they make (hypothetical) Splash Engineering presentations about their proposed fish mitigation solutions for Bi
Author(s): Integrated Teaching and Learning Program,

License information
Related content

Copyright 2011 - Integrated Teaching and Learning Program, College of Engineering, University of Colorado at Boulder,http://www.teachengineering.org/policy_ipp.php

Dams
Through eight lessons, students are introduced to many facets of dams, including their basic components, the common types (all designed to resist strong forces), their primary benefits (electricity generation, water supply, flood control, irrigation, recreation), and their importance (historically, currently and globally). Through an introduction to kinetic and potential energy, students come to understand how dams generate electricity. They learn about the structure, function and purpose of loc
Author(s): Integrated Teaching and Learning Program,

License information
Related content

Copyright 2011 - Integrated Teaching and Learning Program, College of Engineering, University of Colorado at Boulder,http://www.teachengineering.org/policy_ipp.php

Needing Illumination – Investigating Light
This is the first lesson of this unit to introduce light. Lessons 1-5 focus on sound, while 6-9 focus on light. In this lesson, students learn the five words that describe how light interacts with objects: “transparent,” “translucent,” “opaque,” “reflection” and “refraction.”
Author(s): Integrated Teaching and Learning Program,

License information
Related content

Copyright 2011 - Integrated Teaching and Learning Program, College of Engineering, University of Colorado at Boulder,http://www.teachengineering.org/policy_ipp.php

Powering Smallsburg
In this activity, students act as power engineers by specifying the power plants to build for a community. They are given a budget, an expected power demand from the community, and different power plant options with corresponding environmental effects. They can work through this scenario as a class or on their own.
Author(s): Integrated Teaching and Learning Program,

License information
Related content

Copyright 2009 - Integrated Teaching and Learning Program, College of Engineering, University of Colorado at Boulder,http://www.teachengineering.org/policy_ipp.php

Cleaning Up with Decomposers
Students investigate decomposers and the role of decomposers in maintaining the flow of nutrients in an environment. Students also learn how engineers use decomposers to help clean up wastes in a process known as bioremediation. This lesson concludes a series of six lessons in which students use their growing understanding of various environments and the engineering design process, to design and create their own model biodome ecosystems.
Author(s): Integrated Teaching and Learning Program,

License information
Related content

Copyright 2011 - Integrated Teaching and Learning Program, College of Engineering, University of Colorado at Boulder,http://www.teachengineering.org/policy_ipp.php

Chemical Wonders
Students are introduced to chemical engineering and learn about its many different applications. They are provided with a basic introduction to matter and its different properties and states. An associated hands-on activity gives students a chance to test their knowledge of the states of matter and how to make observations using their five senses: touch, smell, sound, sight and taste.
Author(s): Integrated Teaching and Learning Program,

License information
Related content

Copyright 2011 - Integrated Teaching and Learning Program, College of Engineering, University of Colorado at Boulder,http://www.teachengineering.org/policy_ipp.php

Plant Cycles: Photosynthesis & Transpiration
What do plants need? Students examine the effects of light and air on green plants, learning the processes of photosynthesis and transpiration. Student teams plant seeds, placing some in sunlight and others in darkness. They make predictions about the outcomes and record ongoing observations of the condition of the stems, leaves and roots. Then, several healthy plants are placed in glass jars with lids overnight. Condensation forms, illustrating the process of transpiration, or the release of mo
Author(s): Integrated Teaching and Learning Program,

License information
Related content

Copyright 2011 - Integrated Teaching and Learning Program, College of Engineering, University of Colorado at Boulder,http://www.teachengineering.org/policy_ipp.php

Environments and Ecosystems
Students explore the biosphere and its associated environments and ecosystems in the context of creating a model ecosystem, learning along the way about the animals and resources. Students investigate different types of ecosystems, learn new vocabulary, and consider why a solid understanding of one’s environment and the interdependence of an ecosystem can inform the choices we make and the way we engineer our communities. This lesson is part of a series of six lessons in which students use the
Author(s): Integrated Teaching and Learning Program,

License information
Related content

Copyright 2011 - Integrated Teaching and Learning Program, College of Engineering, University of Colorado at Boulder,http://www.teachengineering.org/policy_ipp.php

Engineering in Reverse!
Students learn about the process of reverse engineering and how this technique is used to improve upon technology. In this activity, students analyze a push-toy and draw a diagram of the predicted mechanisms inside the toy. Then, they disassemble the toy and draw the actual inner mechanisms. By understanding how the push-toy functions, students make suggestions for improvement, such as cost effectiveness, improved functionality, ecological friendliness and any additional functionality they deter
Author(s): Integrated Teaching and Learning Program,

License information
Related content

Copyright 2010 - Integrated Teaching and Learning Program, College of Engineering, University of Colorado at Boulder,http://www.teachengineering.org/policy_ipp.php

Human Power
Students do work by lifting a known mass over a period of time. The mass and measured distance and time is used to calculate force, work, energy and power in metric units. The students’ power is then compared to horse power and the power required to light a 60 W light bulb.
Author(s): Office of Educational Partnerships,

License information
Related content

Copyright 2011 - Office of Educational Partnerships, Clarkson University, Potsdam, NY,http://www.teachengineering.org/policy_ipp.php