Protecting the sustainability of UK wheat production

Wheat-pr
21 Feb 2011 12:11:00.000

PA57/11

Scientists at The University of Nottingham are to play a key role in a new £7m research programme to help maintain the world’s production of wheat - by increasing the diversity of traits available in wheat via a comprehensive pre-breeding programme. It will be the first study of its kind in the UK for 20 years.

At a time when the world is facing a growing global population and environmental change the project will be important to ensure the sustainability of wheat production in the UK and beyond.

To meet this challenge the Biotechnology and Biological Sciences Research Council (BBSRC) has brought together a consortium of the UK’s leading scientists in wheat genetics and trait analysis to underpin and enhance wheat breeding activities here in the UK and internationally. The foundation of the programme is based upon three areas of research to generate new diverse genetic variation.

Click here for full story

Experts in the School of Biosciences will form part of this nationwide consortium involving the John Innes Centre, the University of Bristol, the National Institute of Agricultural Botany (NIAB) and Rothamsted Research.

Wheat breeders in the UK and throughout the world are working on new varieties that can meet the challenges of food production in the 21stt century. However, due to modern breeding practises there is not sufficient genetic variation in modern wheat varieties to obtain the increases in yield required to meet demand, climate change or environmental requirements - such as heat and drought tolerance, water use efficiency and nutrient use efficiency. The introduction of new genetic variation into wheat, for breeders to exploit, is therefore of critical importance for global food production.

Ian King, Professor of Cereal Genomics in the Department of Plant and Crop Sciences, said: “The world’s population is set to increase from seven to nine billion by 2040 to 2050 and it is predicted that we will have to produce 70 per cent more food than we do at present - just to maintain our present level of nutrition - which already includes one billion malnourished people and a further 100 million at near starvation level.

“Eleven per cent of the earth’s surface is presently used for crop production, with a further 22 per cent used for grazing animals. Of the remainder of the earth’s surface only an additional 10 per cent is suitable for relatively low levels of production. Thus the increase in food production needs to be generated from the same amount of land area that we already farm. One way for this to be achieved is through the production of new high yielding plant varieties that are adapted to global warming and environmentally friendly farming practises that result in less pollution (e.g. reduced fertiliser input).”

Six hundred million tonnes of wheat is produced every year – it is second only to rice in total tonnage used for food in the world. Wheat breeders require genetic variations for target traits, such as resistance to disease to develop new superior high yielding adapted wheat varieties.

One of these areas of research is being led by the husband and wife team of Professor Ian and Dr Julie King. Professor and Dr King are world leaders in transferring genetic variation and diversity into crop species from their distant relatives. Their main emphasis will be in transferring variation into wheat from a large number of its distant relatives including species such as cultivated rye and Thinopyrum bessarabicum, a species which grows in sand dunes and is highly salt tolerant. The wild relatives of wheat are of particular importance as they provide a vast and largely untapped source of genetic variation for most if not all agronomically important traits.

Dr John Foulkes, Associate Professor of Crop Science in the Department of Plant and Crop Sciences, and an expert in the physiological and genetic analysis of yield potential and resource-use efficiency traits in wheat and Dr Erik Murchie, a lecturer in crop physiology, will be looking at biomass production and nutrient use efficiency - how to increase biomass productivity and the amount of grain yield that plants produce for each kilo of nutrient available to the plant.

Dr Foulkes said: “In collaboration with colleagues at Rothamsted Research, our research will screen a wide range of novel wheat genetic resources developed within the Consortium in field experiments to identify lines with enhanced biomass and provide understanding of the biological basis of the key traits underlying genetic variation in biomass, e.g. light interception and photosynthetic efficiency. High wheat yields are currently dependent on large inputs of fertilizer nitrogen, which is expensive, and contributes greenhouse gas emissions associated with global warming impact. Developing wheat lines which give high yields with reduced nitrogen fertilizer inputs is therefore a priority.”

The consortium will also be working with collaborators throughout the world in India, Australia, the US, France and Mexico.

Dr Celia Caulcott, Director of Innovation and Skills, BBSRC said: “We are delighted that this group of researchers has considered at the earliest point how to ensure that opportunities are immediately taken to translate their work into products that have both social and economic impact in the UK. Having the lines of communication firmly established at this stage offers a great vehicle for exchange of knowledge, ideas and technology as this project progresses.”

The University of Nottingham has a broad research portfolio but has also identified and badged 13 research priority groups in which a concentration of expertise, collaboration and resources create significant critical mass.

Key research areas at Nottingham include energy, drug discovery, global food security, biomedical imaging, advanced manufacturing, integrating global society, operations in a digital world, and science, technology & society. Through these groups, Nottingham researchers will continue to make a major impact on global challenges.

— Ends —

Notes to editors: The University of Nottingham, described by The Sunday Times University Guide 2011 as ‘the embodiment of the modern international university’, has award-winning campuses in the United Kingdom, China and Malaysia. It is ranked in the UK's Top 10 and the World's Top 75 universities by the Shanghai Jiao Tong (SJTU) and the QS World University Rankings. It was named ‘Europe’s greenest university’ in the UI GreenMetric World University Ranking, a league table of the world’s most environmentally-friendly higher education institutions, which ranked Nottingham second in the world overall.

The University is committed to providing a truly international education for its 40,000 students, producing world-leading research and benefiting the communities around its campuses in the UK and Asia.

More than 90 per cent of research at The University of Nottingham is of international quality, according to the most recent Research Assessment Exercise, with almost 60 per cent of all research defined as ‘world-leading’ or ‘internationally excellent’. Research Fortnight analysis of RAE 2008 ranked the University 7th in the UK by research power. The University’s vision is to be recognised around the world for its signature contributions, especially in global food security, energy & sustainability, and health.

More news from the University at: www.nottingham.ac.uk/news

BBSRC is the UK funding agency for research in the life sciences and the largest single public funder of agriculture and food-related research. Sponsored by Government, in 2010/11 BBSRC is investing around £470 million in a wide range of research that makes a significant contribution to the quality of life in the UK and beyond and supports a number of important industrial stakeholders, including the agriculture, food, chemical, healthcare and pharmaceutical sectors. For more information see: http://www.bbsrc.ac.uk

Story credits

More information is available from Professor Ian King on +44 (0) 115 95 16372, ian.king@nottingham.ac.uk or Dr John Foulkes on +44 (0)115 9516024, john.foulkes@nottingham.ac.uk or Mike Davies, BBSRC External Relations on +44 (0) 1793 414694, mike.davies@bbsrc.ac.uk

Lindsay Brooke

Lindsay Brooke - Media Relations Manager

Email: lindsay.brooke@nottingham.ac.uk Phone: +44 (0)115 951 5751 Location: University Park

Additional resources

No additional resources for this article

Related articles

£2.2m quest begins to increase wheat

Published Date
Wednesday 21st November 2012

Breakthrough in protecting global crops from disease

Published Date
Monday 5th September 2011

Breakthrough in the production of flood-tolerant crops

Published Date
Sunday 23rd October 2011

Keeping soft fruit 'fur-free' for longer

Published Date
Friday 11th March 2011

Improving photosynthesis to increase food and fuel production

Published Date
Friday 30th September 2011

Preserving a world favourite flavour

Published Date
Friday 5th June 2015

New tool puts plant hormone under surveillance

Published Date
Sunday 15th January 2012

Media Relations - External Relations

The University of Nottingham
YANG Fujia Building
Jubilee Campus
Wollaton Road
Nottingham, NG8 1BB

telephone: +44 (0) 115 951 5798
email: pressoffice@nottingham.ac.uk