Harnessing the power of killer bacteria

18 Jun 2012 14:42:34.037

PA 174/12

Scientists at The University of Nottingham have discovered new clues about a potential weapon in the fight against a dangerous superbug which is becoming increasingly resistant to usual forms of treatment.

Strains of the bacteria Escherichia coli now account for more hospital-acquired infections than both MRSA and Clostridium difficile put together and are extremely difficult to treat with conventional antibiotics.  
Click here for full story

This latest research published in the Journal of Biological Chemistry has shed new light on how bacteria use ‘bacteriocins’, (substances that kill other strains of bacteria) to enter the bacterial cell and kill it, and how one bacteriocin produced by E. coli, ‘colicin A’, could be targeted to another cell protein (TolA) to create a new ‘Trojan horse’ weapon to ultimately kill the bacterial cell from within.

Bug on bug warfare

Leading the research, Dr Christopher Penfold, from the University’s Centre for Biomolecular Sciences, said:

“Bacteriocins are receiving a lot of interest currently for their potential use in probiotics, cancer therapies, food security and new antimicrobial techniques. As current antibiotic treatments to fight superbugs are increasingly proving ineffective, it could be that harnessing the toxic power of bugs to fight rival bugs is going to be the way forward.

“Our research has specifically provided structural evidence that colicin A in E.coli binds to a novel binding site of the protein (TolA) which is present naturally and crucial to the health of a bacterial cell. This is significant because it could lead to potential antimicrobial therapies through the design of small novel synthetic compounds that could ultimately block the natural functions of TolA leading to cell death and the eradication of the infection.”

The researchers found that although colicins have good antimicrobial activity it is difficult to envisage using them as potential new antibiotics because they are large protein molecules that would activate the body’s immune response to provide protection on the next occasion the colicin is used for treatment.

How molecules penetrate cell defences

This new research into the physical interaction of colicins with components of a bacterial cell is vital to the understanding of how molecules can gain access and penetrate the defences of a bacterial cell.  The research data shows that the interacting region of colicin A with TolA consists of a relatively small surface area whose bindingregion highlights essential molecular interactions that stabilise the interacting complex. This may provide important information for the design of novel synthetic substrates that could bind to and disable the essential functions of TolA leading to a loss of cellular functions associated with this protein and ultimately cell death. 

Bacteria experts in conference at Nottingham

The E.coli ‘colicin A’ research will be one of the latest breakthroughs in this field of medical science under discussion at a Biochemical Society conference at The University of Nottingham in July. ‘How bugs kill bugs: progress and challenges in bacteriocin research’ will bring together experts in microbial ecology, cell biology, structural biology and molecular biophysics to explore the role played by bacteriocins in intermicrobial competition, the molecular mechanisms by which bacteriocins penetrate the formidable defences of bacteria and how bacteriocin import has yielded novel insights into the organization and structural biochemistry of the bacterial cell.

Ends —

For up to the minute media alerts, follow us on Twitter at www.twitter.com/UoNPressOffice

Notes to editors: The University of Nottingham, described by The Sunday Times University Guide 2011 as ‘the embodiment of the modern international university’, has award-winning campuses in the United Kingdom, China and Malaysia. It is ranked in the UK's Top 10 and the World's Top 75 universities by the Shanghai Jiao Tong (SJTU) and the QS World University Rankings. It was named ‘the world’s greenest university’ in the UI GreenMetric World University Ranking 2011, a league table of the most environmentally-friendly higher education institutions.

The University is committed to providing a truly international education for its 40,000 students, producing world-leading research and benefiting the communities around its campuses in the UK and Asia. Impact: The Nottingham Campaign, its biggest ever fund-raising campaign, will deliver the University’s vision to change lives, tackle global issues and shape the future. For more details, visit: www.nottingham.ac.uk/impactcampaign

More than 90 per cent of research at The University of Nottingham is of international quality, according to the most recent Research Assessment Exercise, with almost 60 per cent of all research defined as ‘world-leading’ or ‘internationally excellent’. Research Fortnight analysis of RAE 2008 ranked the University 7th in the UK by research power.

The University’s vision is to be recognised around the world for its signature contributions, especially in global food security, energy & sustainability, and health. The University won a Queen’s Award for Higher and Further Education in 2011, for its research on global food security.

More news from the University at: www.nottingham.ac.uk/news

Story credits

More information is available from Dr Christopher Penfold on +44 (0)115 84 67957 or chris.penfold@nottingham.ac.uk

Additional resources

No additional resources for this article

Related articles

Breaking up the superbugs' party

Published Date
Wednesday 14th August 2013

Charity dinner in fight against superbugs

Published Date
Wednesday 29th September 2010

New discovery in the microbiology of serious human disease

Published Date
Thursday 2nd October 2014

Study reveals the secret to a sea sponge's toxicity

Published Date
Thursday 13th September 2012

Media Relations - External Relations

The University of Nottingham
YANG Fujia Building
Jubilee Campus
Wollaton Road
Nottingham, NG8 1BB

telephone: +44 (0) 115 951 5798
email: pressoffice@nottingham.ac.uk