Genetic abnormality offers diagnostic hope for children's cancer

A young brain tumour patient at the CBTRC
29 Mar 2012 00:01:00.000
A chromosomal abnormality in children with a deadly form of brain cancer is linked with a poorer chance of survival, clinician scientists at The University of Nottingham have discovered.

The study, led by experts at Nottingham’s Children’s Brain Tumour Research Centre as part of a European collaboration and co-funded by Brain Tumour UK and the James Tudor Foundation, could potentially lead to a new diagnostic test to allow doctors to identify youngsters who are at the highest risk associated with an ependymoma tumour and may need aggressive life-saving treatments.

The research could also help them to decide which children with the tumour have a better prognosis and would benefit from less intensive therapies, reducing their exposure to a range of side effects which can cause permanent disabilities, having a debilitating impact on them for the rest of their lives.
Click here for full story

The study, published in the April 1 edition of the journal Clinical Cancer Research, focused on looking at abnormal copies of chromosomes in the cells of ependymoma tumours and aimed to establish whether it was associated with a worse outlook for children suffering from the disease.

The research, led by Professor Richard Grundy and Dr John-Paul Kilday, found that increased copies of a specific region of a chromosome called 1q25 were associated with around 20 per cent of the 147 tumours they tested from European children with ependymoma and that it was associated with a worse outcome in younger children treated with surgery and chemotherapy.

Predicting the future

In addition, when combining the results for 1q25 copy gain with how much tumour was removed at the time of surgery, the scientists could accurately place the children into three risk groups — high, intermediate and standard.

Dr Kilday said: “This study is the first to assess copy number gain like this in groups of children with ependymoma who have been treated in a similar way and is an important step forward in being able to predict the future for children with these brain tumours”

“We are now hoping that these findings are reproduced in other studies currently underway in other countries, including the USA” added Professor Grundy, “If their results match ours, then the presence of 1q25 copy gain in childhood ependymoma could be introduced into future international treatment planning as a new marker of poor outcome which will in turn define treatment. We would intend that this should be something each patient’s tumour is tested for at the time of diagnosis.”

Andy Foote, Trustee of Brain Tumour UK said: “Childhood ependymoma is a devastating condition for any family to have to endure. Pioneering work such as this from Professor Grundy and Dr Kilday is key to giving patients and families the best possible outcomes in the wake of diagnosis, and is an inspiring example of the work that Brain Tumour UK supports.”

Ependymomas are brain tumours that can occur at any age but are more common in children. Despite improvements in therapy over recent years, the prognosis for children with this cancer remains poor — 40 per cent of affected children still die.

Genetic abnormalities

One of the reasons that survival for childhood ependymomas has not improved is that, until now, doctors have not been able to accurately predict which tumours will behave more or less aggressively than others. Factors that have helped the ability to predict outcomes in other cancers, such as patient sex, age, how much of the tumour is removed and how aggressive the tumour appears under the microscope, have not been found to be consistently reliable in previous studies.

In normal humans, the cells which make up our body tissue contain chromosomes made up of DNA and proteins — the building blocks of life. Normally, our cells have two copies of 23 chromosomes (numbered 1 to 22) plus two sex chromosomes, making a total of 46 chromosomes. Each chromosome has two arms — a short arm called the p arm and a long arm called the q arm.

In tumour cells the number of chromosomes can vary significantly from the normal cell numbers and in ependymoma a frequent finding from biological studies is increased copies of chromosome number 1, specifically increased numbers of the long arm of chromosome 1. This abnormality is termed 1q copy number gain.

Survival rates

For the Nottingham-led study, the scientists assessed the results from 147 brain ependymomas in young UK and French children who received tumour surgery followed by chemotherapy and older European children who received tumour surgery followed by radiotherapy.

Copy number gain of 1q in the ependymoma cells from each of the 147 patients was assessed using a technique called fluorescence in situ hybridisation (FISH) in which pieces of DNA called probes are made in the lab containing a fluorescent dye. This enables the tumour cells to be seen down a fluorescent microscope. In the Nottingham project, the scientists used a green probe that bound to a region within chromosome 1q of the tumour cells, called 1q25.

The team then linked which of the ependymomas had increased copies of the 1q25 probe in their cells to corresponding patient data to work out whether increased copy number gain was associated with a worse survival rate.

A full copy of the paper is available to view online.

— Ends —

For up to the minute media alerts, follow us on Twitter

Notes to editors: The University of Nottingham, described by The Sunday Times University Guide 2011 as ‘the embodiment of the modern international university’, has 40,000 students at award-winning campuses in the United Kingdom, China and Malaysia. It is ranked in the UK's Top 10 and the World's Top 75 universities by the Shanghai Jiao Tong (SJTU) and the QS World University Rankings. It was named ‘the world’s greenest university’ in the UI GreenMetric World University Ranking 2011.

More than 90 per cent of research at The University of Nottingham is of international quality, according to the most recent Research Assessment Exercise. The University’s vision is to be recognised around the world for its signature contributions, especially in global food security, energy & sustainability, and health. The University won a Queen’s Anniversary Prize for Higher and Further Education in 2011, for its research into global food security.

Impact: The Nottingham Campaign, its biggest ever fund-raising campaign, will deliver the University’s vision to change lives, tackle global issues and shape the future. More news

 

About Brain Tumour UK

Brain Tumour UK is the UK-wide, caring charity committed to fighting brain tumours. It does this by providing support online, on the phone, by email and through support groups. It funds scientific research seeking to make discoveries to improve the quality of life for people living with a brain tumour and identify better treatments.

Brain Tumour UK raises awareness of brain tumour issues with central government, regional and local opinion formers and with the public, to change things for the better for everyone, everywhere in the UK affected by a brain tumour.

Contact us at pressoffice@braintumouruk.org.uk 

Story credits

More information is available from Professor Richard Grundy on +44 (0)7880 500682, richard.grundy@nottingham.ac.uk

Emma Thorne Emma Thorne - Media Relations Manager

Email: emma.thorne@nottingham.ac.uk Phone: +44 (0)115 951 5793 Location: University Park

Additional resources

No additional resources for this article

Media Relations - External Relations

The University of Nottingham
YANG Fujia Building
Jubilee Campus
Wollaton Road
Nottingham, NG8 1BB

telephone: +44 (0) 115 951 5798
email: pressoffice@nottingham.ac.uk