Nottingham researchers in Alzheimer's risk gene discovery

Hands of a young woman holding an elderly lady's hand
14 Nov 2012 22:00:00.000

PA 324/12

Researchers from Nottingham have played their part in the discovery of a rare genetic mutation that increases the risk of Alzheimer’s disease, in a study with major implications for understanding the causes of the disease.

The international team, which involved a research team led by Kevin Morgan, Professor of Human Genomics and Molecular Genetics at The University of Nottingham, used data from more than 25,000 people to link a rare variant of the TREM2 gene — which is known to play a role in the immune system — to a higher risk of Alzheimer’s.

The discovery is the first so-called ‘Goldilocks’ variant associated with Alzheimer’s Disease, because it’s prevalence is ‘just right — it’s common enough to be identified in large populations but rare enough to point to a genetic mutation that potentially could have a significant role in identifying risk factors for the disease.

Click here for full story

Professor Morgan said: “This research has identified the first ‘Goldilocks’ variant in Alzheimer’s Disease — one whose effect is spot on, not too big or too small, just perfect for this type of approach to identify.

“The risk associated with this new variant is the largest seen to date and heralds the start of a new era in AD genetic research. At long last we are beginning to witness major breakthroughs that will hopefully result in therapeutic developments to help alleviate this devastating condition.”

The findings of the research, which are published in the New England Journal of Medicine on Wednesday November 14, suggest that problems with the immune system could be a key player in the development of Alzheimer’s.

Funders for the study included Alzheimer’s Research UK (ARUK), the UK’s leading dementia research charity, the MRC and the Wellcome Trust.

The causes of Alzheimer’s are still unknown, but the disease is likely to be caused by a complex mix of genetic and environmental factors. While some genes that increase the risk of Alzheimer’s have been discovered, these discoveries do not explain all of the genetic risk — but recent advances in technology means it’s now possible to study genes in much more detail, picking up rare mutations of genes that could not be found through other methods. The researchers set out to uncover some of the rarer genetic variants involved in Alzheimer’s, in a bid to get a clearer picture of the causes of the disease.

The international collaboration, led by scientists at University College London’s Institute of Neurology, used the Nottingham ARUK DNA bank, one of the largest collections of DNA from Alzheimer’s patients, to completely sequence the entire coding region (exome) of their genes.

The researchers began by sequencing the genes of 1,092 people with Alzheimer’s and a control group of 1,107 healthy people. The results showed several mutations in the TREM2 gene occurred more frequently in people who had the disease than in non-sufferers. One specific mutation, known as R47H, had a particularly strong association with the disease — appearing in 2% of people with Alzheimer’s compared with 0.5% of people without the disease.

The scientists then sought to confirm their findings in two larger independent groups, carrying out a meta-analysis of data from 5,541 people with Alzheimer’s and 13,408 people without the disease, as well as directly genotyping the genetic variant in another 1,134 people with Alzheimer’s and 2,834 people without the disease. In both instances, they found that the R47H variant was more likely to appear in people affected by Alzheimer’s than in people without the disease.

While this mutation increases the likelihood of developing Alzheimer’s roughly three-fold, it is extremely rare, affecting just 0.3% of the population. But by identifying the mutation, the research provides valuable new information about the potential causes of Alzheimer’s disease.

The TREM2 gene controls a protein that is involved in regulating the immune response to injury or disease, acting as an ‘on/off switch’ for immune cells in the brain called microglia. The R47H variant of the gene results in a partial loss of this function, with less ability to keep these cells’ activity in check – potentially causing them to become hyperactive. The researchers now want to find out more about the role of TREM2 and better understand the effects of the R47H variant.

— Ends — 

For up to the minute media alerts, follow us on Twitter

Notes to editors: The University of Nottingham, described by The Sunday Times University Guide 2011 as ‘the embodiment of the modern international university’, has 40,000 students at award-winning campuses in the United Kingdom, China and Malaysia. It is ranked in the UK's Top 10 and the World's Top 75 universities by the Shanghai Jiao Tong (SJTU) and the QS World University Rankings. It was named ‘the world’s greenest university’ in the UI GreenMetric World University Ranking 2011.

More than 90 per cent of research at The University of Nottingham is of international quality, according to the most recent Research Assessment Exercise. The University’s vision is to be recognised around the world for its signature contributions, especially in global food security, energy & sustainability, and health. The University won a Queen’s Anniversary Prize for Higher and Further Education in 2011, for its research into global food security.

Impact: The Nottingham Campaign, its biggest ever fund-raising campaign, will deliver the University’s vision to change lives, tackle global issues and shape the future. More news

Story credits

More information is available from Professor Kevin Morgan on +44 (0)115 823 0724,

Emma Thorne Emma Thorne - Media Relations Manager

Email: Phone: +44 (0)115 951 5793 Location: University Park

Additional resources

No additional resources for this article

Related articles

New gene discovery sheds more light on Alzheimer's risk

Published Date
Thursday 12th December 2013

'Smart' genes put us at risk of mental illness

Published Date
Tuesday 4th December 2012

Unscrambling the genetics of the chicken's 'blue' egg

Published Date
Tuesday 20th August 2013

Improving early diagnosis of Alzheimer's disease

Published Date
Tuesday 2nd August 2011

IUD best treatment for heavy periods, major trial shows

Published Date
Thursday 10th January 2013

Media Relations - External Relations

The University of Nottingham
YANG Fujia Building
Jubilee Campus
Wollaton Road
Nottingham, NG8 1BB

telephone: +44 (0) 115 951 5798