School of Pharmacy

Image of Catherine Jopling

Catherine Jopling

Associate Professor, Faculty of Science



I carried out my PhD from 1998-2001 with Professor Anne Willis at the University of Leicester on internal ribosome entry site (IRES)-mediated translation. Following my PhD I obtained a Wellcome Trust International Research Fellowship, which provided funding for me to work as a postdoctoral researcher with Professor Peter Sarnow at Stanford University, USA from 2002-5. At Stanford, I worked on a liver-specific microRNA, miR-122, and demonstrated that it interacts directly with hepatitis C virus (HCV) RNA and has an essential positive role in HCV replication. I spent the final year of my fellowship in Professor Richard Jackson's group at the University of Cambridge, where I continued with my previous research. In 2007 I came to Nottingham as part of the RNA Biology Group, and was awarded a BBSRC David Phillips Fellowship to start my own research group, with a focus on understanding miRNA regulation of viral replication. This ran from September 2008 to August 2013. In September 2013 I was appointed Lecturer in the School of Pharmacy. I was promoted to Associate Professor in August 2020.

Teaching Summary

I convene the Future Medicines module in year 4 of the MPharm course, and also teach gene therapy and RNA therapeutics material within this module.

I convene, and teach virology in, the Infection and Immunity module in year 2 of the MSci course.

Research Summary

MicroRNAs (miRNAs) are 21-23 nucleotide (nt) single-stranded RNA molecules that are important regulators of gene expression in a broad range of eukaryotic organisms. They are encoded as part of… read more

Recent Publications

School of Pharmacy Building, East Drive, University Park, Nottingham, NG7 2RD

Current Research

MicroRNAs (miRNAs) are 21-23 nucleotide (nt) single-stranded RNA molecules that are important regulators of gene expression in a broad range of eukaryotic organisms. They are encoded as part of longer transcripts that undergo successive nuclear and cytoplasmic processing steps to yield a mature miRNA, which functions in association with a complex of proteins known as the miRNP. In animals most miRNAs have been found to function by associating with imperfect complementarity with sites in the 3' untranslated regions (UTRs) of mRNA targets. This results in the repression of gene expression by a process that is not yet fully understood, although inhibition of translation and RNA degradation are both implicated.

Mammalian miRNAs show a high degree of specificity of expression, both by developmental stage and by tissue type. miR-122 is a highly liver-specific miRNA that accounts for 70% of the total miRNA content of the liver. My postdoctoral research showed that miR-122 binds directly to two adjacent sites in the 5'UTR of hepatitis C virus (HCV) RNA, and that this binding is required for viral replication, a novel mode of action for a miRNA. miR-122 also has biologically important roles in cholesterol and iron metabolism in the liver, and functions as a tumour suppressor.

Regulation of HCV by miR-122

One focus of current research is understanding the mechanism of miR-122 regulation of HCV in more detail and identifying the RNA and protein factors that are involved.

miR-122 biogenesis

We are also interested in understanding the biogenesis of miR-122 and other miRNAs. miR-122 is located within a long noncoding (lnc)RNA primary (pri-miRNA) transcript. In collaboration with Professor Nick Proudfoot at the University of Oxford, we found that pri-miR-122 and other lnc-pri-miRNAs use an unusual method of transcription termination that is directly driven by excision of the precursor miRNA hairpin by the Microprocessor complex. We are now investigating the interplay between cotranscriptional processes and miRNA biogenesis in different classes of miRNA gene.

miRNA function in the inflammatory response

Our third area of research, in collaboration with Dr Cornelia de Moor and Dr Anna Piccinini at the University of Notitngham, focuses on understanding miRNA regulation of mRNAs that are induced at the level of transcription and undergo rapid changes in poly(A) tail length during the inflammatory response.

Therapeutic RNA delivery

In collaboration with Professor Snow Stolnik and Dr Naoto Hori at the University of Nottingham, and Professor Helen Hailes at UCL, we are using state-of-the-art molecular biology approaches to investigate factors that influence efficient RNA delivery into cells for therapeutic purposes.

Group members



Angela Downie (BBSRC-funded)

PhD students

Athena Martin (BBSRC DTP)

Alfredo Smart (EPSRC CDT)

Merryn Hughes (EPSRC CDT)


PhD students

Poppy Winlow

Aimee Parsons

Shoaib Ahmed

Andrew Lewis


Ashley Roberts

Rachel Doidge

School of Pharmacy

University of Nottingham
University Park
Nottingham, NG7 2RD

For all enquiries please visit: