School of Biosciences
  • Print
   
   
 

Image of Barry Lomax

Barry Lomax

Lecturer in Environmental Science, Faculty of Science

Contact

  • workGateway Building
    Sutton Bonington Campus
    Sutton Bonington
    Leicestershire
    LE12 5RD
    UK
  • work0115 951 6258
  • fax0115 951 6261

Biography

Dr Barry Lomax

Lecturer in Environmental Science

Barry's research is focused on quantifying how the Earth's climate has changed over geologic time, how these changes have influenced the Earth's terrestrial biosphere and how in turn the Earth's terrestrial biosphere has influenced climate. Particular interests include:

• Palaeopolyploidy and plant genome size over geological time.

• Plant responses to CO2

• Sporopollenin chemistry as a palaeoclimate proxy

Expertise Summary

My expertise spans both plant and Earth sciences

Teaching Summary

My teaching interests reflect my research skills and interests, which link together plant and Earth Sciences . I currently teach on the following modules:

Dissertation in Environmental Science (Year 1)

Environmental Geoscience (Year 1)

Climate change science (Year 2)

Geobiology (Year 3)

Research Methods (Year 4)

Research Summary

I am interested in the quantifying how the Earth's climate has changed over geologic time, how these changes have influenced the Earth's terrestrial biosphere and how in turn the Earth's terrestrial… read more

Recent Publications

I'm on the editorial board for Palaeontology and it's sister journal Papers in Palaeontology and I serve on the council of International Federation of Palynology Societies and act as the secretary to the Linnean Society Specialist Working Group on Palynology.

Current Research

I am interested in the quantifying how the Earth's climate has changed over geologic time, how these changes have influenced the Earth's terrestrial biosphere and how in turn the Earth's terrestrial biosphere has influenced climate. I am achieving this through combining palaeobotanical studies with experimental investigations into how plants adapt to environmental change. This is leading to the development of mechanist proxies to reconstruct palaeoclimates and understand changes in plant genome size over the geological time.

Palaeopolyploidy and angiosperm radiation and diversification: Evidence provided by genome sequences suggests that angiosperms have over their evolutionary history undergone several discrete periods of polyploidy (genome doubling). This in turn has been used to suggest palaeopolyploidy was a key driver in allowing the angiosperms to rapidly diversify and dominate. I'm using the relationship between plant epidermal cell anatomy and genome size described in extant plant to directly test this assertion via the analysis of fossil plant epidermal cell anatomy.

Plant responses to CO2 : Reconstructing palaeo CO2 concentration using the well characterized inverse relationship between stomatal frequency and atmospheric CO2 using both fossil and living plants I'm using this technique to assess if the angiosperms radiation and diversification event was facilitated by a decline in atmospheric CO2. Recently my plant CO2 research interests have diversified to include plant responses to CO2 leaks from carbon capture and storage infrastructure.

Sporopollenin chemistry: My current and previous research has shown that the chemical composition of sporopollenin the biomacromolecule that makes up the outer wall of pollen grains and spores is regulated by the environment. Exposure to elevated UV-B stimulates the production of plant sun screen compounds which we can quantify. We are using this relationship to develop a wide variety of mechanistic proxies to investigate climate and environmental change over geological time.

Current funded research projects include:

NERC New Investigator grant. Genome duplication and angiosperm diversification: combining experimental and fossil evidence.

National Grid Industrial collaboration (COOLTRANS Project). Assessing the environmental impact of CO2 leakage from infrastructure associated with carbon capture and storage facilities.

NERC Standard grant, joint with Dr Will Gosling, Open University. 500,000 years of solar irradiance, climate and vegetation changes.

Royal Society research award, joint with Dr Fiona Gill, University of Leeds. Dinosaur Diets and Methane Emissions - an experimental approach to determining the effect of elevated carbon dioxide levels during the Mesozoic on the metabolizable energy content of plants.

Massey University Research Fund joint with Dr Katherine Holt, Massey University. Do UV-B absorbing compounds in New Zealand pollen track changes in UV-B flux?

School of Biosciences

University of Nottingham
Sutton Bonington Campus
Nr Loughborough
LE12 5RD, UK

For all enquiries please visit:
www.nottingham.ac.uk/enquire

Find us
Campus map
Room Locations on Campus