article

Biomaterial-delivered chemotherapy leads to long-term survival in brain cancer, study finds

Thursday, 18 July 2019

A combination of chemotherapy drugs during brain cancer surgery using a biodegradable paste, leads to long-term survival, researchers at the University of Nottingham have discovered.

In a new study published in Clinical Cancer Research, scientists found a significant survival benefit in rat models with brain tumours when a combination of two chemotherapy drugs, (etoposide and temozolomide), were delivered using a biodegradable polymer called PLGA/PEG.

The research was carried out by experts from the Children’s Brain Tumour Research Centre (CBTRC) at the University of Nottingham, in partnership with researchers from Johns Hopkins University in the USA.

Glioblastoma multiforme (GBM) is the most aggressive and common brain tumour with a dismal average survival of 15 months from diagnosis, killing 3500 UK people annually. This is despite treatment comprising surgery, radiotherapy and chemotherapy.

GBM treatment is limited by the inability of otherwise potentially effective drugs to penetrate the brain when delivered via the bloodstream or administered orally. This is mainly due to a structure surrounding the brain called the ‘blood brain barrier’, which functions to protect toxins and infectious agents entering the brain.

The research team led by Dr. Ruman Rahman (Assistant Professor) and Dr. Stuart Smith (Clinical Associate Professor of Neurosurgery) at the CBTRC discovered that PLGA/PEG could act as a delivery system for chemotherapy drugs in a previous study in 2013.

The polymer formulation, which was originally designed to help mend broken bones, is made from two types of micro-particles called PLGA and PEG and has been developed and patented by leading tissue engineer Professor Kevin Shakesheff, based in the University’s School of Pharmacy. A powder at room temperature, it can be mixed to a toothpaste-like consistency with the addition of water.

The paste can be applied to the brain cancer cavity created after removal of the bulk tumour during surgery. The paste then releases chemotherapy drugs into the brain, in so doing targeting the remaining cancer cells which cannot be safely removed by surgery and which cause the cancer to return.

The effect was further enhanced when combined with radiotherapy. Long-term survival was observed in over half the rat models, with laboratory tests confirming that the brains were clear of any cancer. Animals receiving this intervention survived for longer compared to those treated with current standard-of-care treatment offered to GBM patients.

The team’s next step is to initiate an early phase clinical trial at Queen’s Medical Centre, Nottingham.

We are very pleased with this first demonstration that chemotherapy drugs delivered to the brain in this manner during surgery, can lead to a considerable improvement in brain cancer survival. The results give us a realistic opportunity to consider this therapy for a human clinical trial.”
Dr Rahman, Assistant Professor of Molecular Neuro-Oncology

A full copy of the paper can be found here.

Story credits

More information is available from Dr Ruman Rahman at ruman.rahman@nottingham.ac.uk

CharlotteAnscombe
Charlotte Anscombe - Media Relations Manager - Faculty of Medicine and Health Sciences
Email: charlotte.anscombe@nottingham.ac.uk
Phone: 0115 748 4417
Location:

Notes to editors:

About the University of Nottingham

Ranked 32 in Europe and 16th in the UK by the QS World University Rankings: Europe 2024, the University of Nottingham is a founding member of the Russell Group of research-intensive universities. Studying at the University of Nottingham is a life-changing experience, and we pride ourselves on unlocking the potential of our students. We have a pioneering spirit, expressed in the vision of our founder Sir Jesse Boot, which has seen us lead the way in establishing campuses in China and Malaysia - part of a globally connected network of education, research and industrial engagement.

Nottingham was crowned Sports University of the Year by The Times and Sunday Times Good University Guide 2024 – the third time it has been given the honour since 2018 – and by the Daily Mail University Guide 2024.

The university is among the best universities in the UK for the strength of our research, positioned seventh for research power in the UK according to REF 2021. The birthplace of discoveries such as MRI and ibuprofen, our innovations transform lives and tackle global problems such as sustainable food supplies, ending modern slavery, developing greener transport, and reducing reliance on fossil fuels.

The university is a major employer and industry partner - locally and globally - and our graduates are the second most targeted by the UK's top employers, according to The Graduate Market in 2022 report by High Fliers Research.

We lead the Universities for Nottingham initiative, in partnership with Nottingham Trent University, a pioneering collaboration between the city’s two world-class institutions to improve levels of prosperity, opportunity, sustainability, health and wellbeing for residents in the city and region we are proud to call home.

More news…

Media Relations - External Relations

The University of Nottingham
YANG Fujia Building
Jubilee Campus
Wollaton Road
Nottingham, NG8 1BB

telephone: +44 (0) 115 951 5798
email: pressoffice@nottingham.ac.uk